某果園要用三輛汽車將一批水果從所在城市E運(yùn)至銷售城市F,已知從城市E到城市F有兩條公路.統(tǒng)計(jì)表明:汽車走公路Ⅰ堵車的概率為,不堵車的概率為;走公路Ⅱ堵車的概率為,不堵車的概率為,若甲、乙兩輛汽車走公路Ⅰ,第三輛汽車丙由于其他原因走公路Ⅱ運(yùn)送水果,且三輛汽車是否堵車相互之間沒有影響.
(1)求甲、乙兩輛汽車中恰有一輛堵車的概率;
(2)求三輛汽車中至少有兩輛堵車的概率.

(1)  (2)

解析試題分析:解:記“汽車甲走公路Ⅰ堵車”為事件A,“汽車乙走公路Ⅰ堵車”為事件B,
“汽車丙走公路Ⅱ堵車”為事件C.
(1)甲、乙兩輛汽車中恰有一輛堵車的概率為
P1=P(A·)+P(·B)=××.
(2)甲、乙、丙三輛汽車中至少有兩輛堵車的概率為
P2=P(A·B·)+P(A··C)+P(·B·C)+P(A·B·C)
××××××××.

考點(diǎn):獨(dú)立事件的概率
點(diǎn)評(píng):本題用到獨(dú)立事件的概率公式:。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了解某校高三畢業(yè)班報(bào)考體育專業(yè)學(xué)生的體重(單位:千克)情況,將從該市某學(xué)校抽取的樣本數(shù)據(jù)整理后得到如下頻率分布直方圖.已知圖中從左至右前3個(gè)小組的頻率之比為1:2:3,其中第2小組的頻數(shù)為12.

(Ⅰ)求該校報(bào)考體育專業(yè)學(xué)生的總?cè)藬?shù)n;
(Ⅱ)若用這所學(xué)校的樣本數(shù)據(jù)來估計(jì)該市的總體情況,現(xiàn)從該市報(bào)考體育專業(yè)的學(xué)生中任選3人,設(shè)表示體重超過60千克的學(xué)生人數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某人在如圖所示的直角邊長(zhǎng)為4米的三角形地塊的每個(gè)格點(diǎn)(指縱、橫直線的交叉點(diǎn)以及三角形的頂點(diǎn))處都種了一株相同品種的作物。根據(jù)歷年的種植經(jīng)驗(yàn),一株該種作物的年收貨量(單位:kg)與它的“相近”作物株數(shù)之間的關(guān)系如下表所示:

X
1
2
3
4
Y
51
48
45
42
 
這里,兩株作物“相近”是指它們之間的直線距離不超過1米。
(Ⅰ)完成下表,并求所種作物的平均年收獲量;
Y
51
48
45
42
頻數(shù)
 
4
 
 
 (Ⅱ)在所種作物中隨機(jī)選取一株,求它的年收獲量至少為48kg的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某人在如圖所示的直角邊長(zhǎng)為4米的三角形地塊的每個(gè)格點(diǎn)(指縱、橫的交叉點(diǎn)記憶三角形的頂點(diǎn))處都種了一株相同品種的作物。根據(jù)歷年的種植經(jīng)驗(yàn),一株該種作物的年收獲量Y(單位:kg)與它的“相近”作物株數(shù)X之間的關(guān)系如下表所示:

X
1
2
3
4
Y
51
48
45
42
這里,兩株作物“相近”是指它們之間的直線距離不超過1米。

(I)從三角形地塊的內(nèi)部和邊界上分別隨機(jī)選取一株作物,求它們恰好“相近”的概率;
(II)從所種作物中隨機(jī)選取一株,求它的年收獲量的分布列與數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在一次購物抽獎(jiǎng)活動(dòng)中,假設(shè)某6張券中有一等獎(jiǎng) 券1張,可獲價(jià)值50元的獎(jiǎng)品;有二等獎(jiǎng)券1張,每張可獲價(jià)值20元的獎(jiǎng)品;其余4張沒有獎(jiǎng).某顧客從此6張中任抽1張,求:
(1)該顧客中獎(jiǎng)的概率;
(2)該顧客參加此活動(dòng)可能獲得的獎(jiǎng)品價(jià)值的期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某校中學(xué)生籃球隊(duì)假期集訓(xùn),集訓(xùn)前共有6個(gè)籃球,其中3個(gè)是新球(即沒有用過的球),3個(gè)是舊球(即至少用過一次的球).每次訓(xùn)練,都從中任意取出2個(gè)球,用完后放回.
(Ⅰ)設(shè)第一次訓(xùn)練時(shí)取到的新球個(gè)數(shù)為,求的分布列和數(shù)學(xué)期望;
(Ⅱ)求第二次訓(xùn)練時(shí)恰好取到一個(gè)新球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某市直小學(xué)為了加強(qiáng)管理,對(duì)全校教職工實(shí)行新的臨時(shí)事假制度:“每位教職工每月在正常的工作時(shí)間,臨時(shí)有事,可請(qǐng)假至多三次,每次至多一小時(shí)”.現(xiàn)對(duì)該制度實(shí)施以來50名教職工請(qǐng)假的次數(shù)進(jìn)行調(diào)查統(tǒng)計(jì),結(jié)果如下表所示:

請(qǐng)假次數(shù)




人數(shù)




根據(jù)上表信息解答以下問題:
(1)從該小學(xué)任選兩名教職工,用表示這兩人請(qǐng)假次數(shù)之和,記“函數(shù)在區(qū)間上有且只有一個(gè)零點(diǎn)”為事件,求事件發(fā)生的概率
(2)從該小學(xué)任選兩名職工,用表示這兩人請(qǐng)假次數(shù)之差的絕對(duì)值,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

山東省某示范性高中為了推進(jìn)新課程改革,滿足不同層次學(xué)生的需求,決定從高一年級(jí)開始,在每周的周一、周三、周五的課外活動(dòng)期間同時(shí)開設(shè)數(shù)學(xué)、物理、化學(xué)、生物和信息技術(shù)輔導(dǎo)講座,每位有興趣的同學(xué)可以在期間的任何一天參加任何一門科目的輔導(dǎo)講座,也可以放棄任何一門科目的輔導(dǎo)講座.(規(guī)定:各科達(dá)到預(yù)先設(shè)定的人數(shù)時(shí)稱為滿座,否則稱為不滿座)統(tǒng)計(jì)數(shù)據(jù)表明,各學(xué)科講座各天的滿座概率如下表:

 
信息技術(shù)
生物
化學(xué)
物理
數(shù)學(xué)
周一





周三





周五





。á瘢┣髷(shù)學(xué)輔導(dǎo)講座在周一、周三、周五都不滿座的概率;
。á颍┰O(shè)周三各輔導(dǎo)講座滿座的科目數(shù)為,求隨即變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某學(xué)校有甲、乙、丙三名學(xué)生報(bào)名參加2012年高校自主招生考試,三位同學(xué)通過自主招生考試考上大學(xué)的概率分別是,且每位同學(xué)能否通過考試時(shí)相互獨(dú)立的。
(Ⅰ)求恰有一位同學(xué)通過高校自主招生考試的概率;
(Ⅱ)若沒有通過自主招生考試,還可以參加2012年6月的全國(guó)統(tǒng)一考試,且每位同學(xué)通過考試的概率均為,求這三位同學(xué)中恰好有一位同學(xué)考上大學(xué)的概率。

查看答案和解析>>

同步練習(xí)冊(cè)答案