【題目】如圖,矩形ABCD中,,,AD的中點(diǎn),將沿BE翻折,記為,在翻折過程中,①點(diǎn)在平面BCDE的射影必在直線AC上;②記與平面BCDE所成的角分別為,則的最大值為0;③設(shè)二面角的平面角為,則.其中正確命題的個數(shù)是(

A.0B.1C.2D.3

【答案】C

【解析】

由題意畫出圖形,推理可得面,由射影的定義,線面成角的定義,二面角的定義,找到對應(yīng)的角,根據(jù)已知條件推理即可判斷角直接的關(guān)系.

在矩形ABCD中,,,AD的中點(diǎn),連接,于點(diǎn),可知,,,所以,所以,,

所以,,所以面,

過點(diǎn)平面于點(diǎn),則點(diǎn)必在直線上,故命題正確;

與平面BCDE所成的角分別為,,即,

因為,所以,,

所以,當(dāng)重合時取等號,即所以命題正確;

因為二面角的平面角為,即,

因為,,

所以,故錯誤.

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在《周髀算經(jīng)》中,把圓及其內(nèi)接正方形稱為圓方圖,把正方形及其內(nèi)切圓稱為方圓圖.圓方圖和方圓圖在我國古代的設(shè)計和建筑領(lǐng)域有著廣泛的應(yīng)用.山西應(yīng)縣木塔是我國現(xiàn)存最古老、最高大的純木結(jié)構(gòu)樓閣式建筑,它的正面圖如圖所示.以該木塔底層的邊作方形,會發(fā)現(xiàn)塔的高度正好跟此對角線長度相等.以塔底座的邊作方形.作方圓圖,會發(fā)現(xiàn)方圓的切點(diǎn)正好位于塔身和塔頂?shù)姆纸?/span>.經(jīng)測量發(fā)現(xiàn),木塔底層的邊不少于米,塔頂到點(diǎn)的距離不超過米,則該木塔的高度可能是(參考數(shù)據(jù):)(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,且與直角坐標(biāo)系長度單位相同的極坐標(biāo)系中,曲線的極坐標(biāo)方程是.

(1)求直線的普通方程與曲線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn).若直與曲線相交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),.

1)若對任意,恒成立,求的取值集合;

2)設(shè),點(diǎn),點(diǎn),直線的斜率為求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的定義域為,其中,.

1)若,判斷的單調(diào)性;

2)當(dāng),設(shè)函數(shù)在區(qū)間上恰有一個零點(diǎn),求正數(shù)a的取值范圍;

3)當(dāng),時,證明:對于,有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】全國文明城市是中國所有城市品牌中含金量最高、創(chuàng)建難度最大的一個,是反映城市整體文明水平的綜合性榮譽(yù)稱號,是目前國內(nèi)城市綜合類評比中的最高榮譽(yù),也是最具價值的城市品牌,作為普通市民,既是城市文明的最大受益者,更是文明城市的主要創(chuàng)造者,皖北某市為提高市民對文明城市創(chuàng)建的認(rèn)識,舉辦了創(chuàng)建文明城市知識競賽,從所有答卷中隨機(jī)抽取400份試卷作為樣本,將樣本的成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:后得到如圖所示的頻率分布直方圖.

(Ⅰ)求樣本的平均數(shù);

(Ⅱ)現(xiàn)從該樣本成績在兩個分?jǐn)?shù)段內(nèi)的市民中按分層抽樣選取6人,求從這6人中隨機(jī)選取2人,且2人的競賽成績之差的絕對值大于20的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是邊長為4的菱形,∠BAD=60°,對角線ACBD相交于點(diǎn)O,四邊形ACFE為梯形,EF//AC,點(diǎn)E在平面ABCD上的射影為OA的中點(diǎn),AE與平面ABCD所成角為45°.

(Ⅰ)求證:BD⊥平面ACF;

(Ⅱ)求平面DEF與平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,橢圓左、右焦點(diǎn)分別為,,離心率為,兩準(zhǔn)線間距離為8,圓O的直徑為,直線l與圓O相切于第四象限點(diǎn)T,與y軸交于M點(diǎn),與橢圓C交于點(diǎn)NN點(diǎn)在T點(diǎn)上方),且

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)求直線l的方程;

3)求直線l上滿足到距離之和為的所有點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】端午節(jié)是我國民間為紀(jì)念愛國詩人屈原的一個傳統(tǒng)節(jié)日.某市為了解端午節(jié)期間粽子的銷售情況,隨機(jī)問卷調(diào)查了該市1000名消費(fèi)者在去年端午節(jié)期間的粽子購買量(單位:克),所得數(shù)據(jù)如下表所示:

購買量

人數(shù)

100

300

400

150

50

將煩率視為概率

1)試求消費(fèi)者粽子購買量不低于300克的概率;

2)若該市有100萬名消費(fèi)者,請估計該市今年在端午節(jié)期間應(yīng)準(zhǔn)備多少千克棕子才能滿足市場需求(以各區(qū)間中點(diǎn)值作為該區(qū)間的購買量).

查看答案和解析>>

同步練習(xí)冊答案