【題目】如圖,四邊形ABCD是邊長為4的菱形,∠BAD=60°,對(duì)角線ACBD相交于點(diǎn)O,四邊形ACFE為梯形,EF//AC,點(diǎn)E在平面ABCD上的射影為OA的中點(diǎn),AE與平面ABCD所成角為45°.

(Ⅰ)求證:BD⊥平面ACF;

(Ⅱ)求平面DEF與平面ABCD所成角的正弦值.

【答案】(Ⅰ)證明見解析;(Ⅱ).

【解析】

(Ⅰ)取AO中點(diǎn)H,連結(jié)EH,則EHBD,又ACBD,由此可證;

(Ⅱ)以H為原點(diǎn),HAx軸,在平面ABCD中過HAC的垂線為y軸,HEz軸,建立空間直角坐標(biāo)系,由(Ⅰ)知,∠EAHAE與平面ABCD所成的角,再根據(jù)平面的法向量的夾角即可求出答案.

(Ⅰ)證:取AO中點(diǎn)H,連結(jié)EH,則EH⊥平面ABCD,

BD在平面ABCD內(nèi),∴EHBD,

又菱形ABCD中,ACBD,且EHAC=H

EH,AC在平面EACF內(nèi),

BD⊥平面EACF,

BD⊥平面ACF

(Ⅱ)解:由(Ⅰ)知EH⊥平面ABCD,

∴以H為原點(diǎn),HAx軸,在平面ABCD中過HAC的垂線為y軸,HEz軸,建立空間直角坐標(biāo)系,

EH⊥平面ABCD,∴∠EAHAE與平面ABCD所成的角,即∠EAH=45°,

AB=4,∴AO=2,AHEH,

H00,0),A,00),D,﹣2,0),O,00),E00,),

平面ABCD的法向量0,01),

(﹣20,0),),

EFAC,∴(﹣2λ,00),

設(shè)平面DEF的法向量x,y,z),

,取y,得0,﹣2),

,

∴平面DEF與平面ABCD所成角的正弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=|x+1||2x2|的最大值為M,正實(shí)數(shù)ab滿足a+bM

1)求2a2+b2的最小值;

2)求證:aabbab

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面向量共線的充要條件是(

A.

B.,兩向量中至少有一個(gè)為零向量

C.λR

D.存在不全為零的實(shí)數(shù)λ1,λ2,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是定義域?yàn)?/span>的偶函數(shù),對(duì),有,且當(dāng)時(shí),,函數(shù).現(xiàn)給出以下命題:①是周期函數(shù);②的圖象關(guān)于直線對(duì)稱;③當(dāng)時(shí),內(nèi)有一個(gè)零點(diǎn);④當(dāng)時(shí),上至少有六個(gè)零.其中正確命題的序號(hào)為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】改革開放40年來,我國城市基礎(chǔ)設(shè)施發(fā)生了巨大的變化,各種交通工具大大方便了人們的出行需求.某城市的A先生實(shí)行的是早九晚五的工作時(shí)間,上班通常乘坐公交或地鐵加步行.已知從家到最近的公交站或地鐵站都需步行5分鐘,乘坐公交到離單位最近的公交站所需時(shí)間Z1(單位:分鐘)服從正態(tài)分布N3342),下車后步行再到單位需要12分鐘;乘坐地鐵到離單位最近的地鐵站所需時(shí)間Z2(單位:分鐘)服從正態(tài)分布N44,22),從地鐵站步行到單位需要5分鐘.現(xiàn)有下列說法:①若800出門,則乘坐公交一定不會(huì)遲到;②若802出門,則乘坐公交和地鐵上班遲到的可能性相同;③若806出門,則乘坐公交比地鐵上班遲到的可能性大;④若812出門,則乘坐地鐵比公交上班遲到的可能性大.則以上說法中正確的序號(hào)是_____.

參考數(shù)據(jù):若ZNμσ2),則PμσZμ+σ)=0.6826,PμZμ+)=0.9544PμZμ+)=0.9974

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】按照水果市場(chǎng)的需要等因素,水果種植戶把某種成熟后的水果按其直徑的大小分為不同等級(jí).某商家計(jì)劃從該種植戶那里購進(jìn)一批這種水果銷售.為了了解這種水果的質(zhì)量等級(jí)情況,現(xiàn)隨機(jī)抽取了100個(gè)這種水果,統(tǒng)計(jì)得到如下直徑分布表(單位:mm):

d

等級(jí)

三級(jí)品

二級(jí)品

一級(jí)品

特級(jí)品

特級(jí)品

頻數(shù)

1

m

29

n

7

用分層抽樣的方法從其中的一級(jí)品和特級(jí)品共抽取6個(gè),其中一級(jí)品2個(gè).

1)估計(jì)這批水果中特級(jí)品的比例;

2)已知樣本中這批水果不按等級(jí)混裝的話20個(gè)約1斤,該種植戶有20000斤這種水果待售,商家提出兩種收購方案:

方案A:以6.5/斤收購;

方案B:以級(jí)別分裝收購,每袋20個(gè),特級(jí)品8/袋,一級(jí)品5/袋,二級(jí)品4/袋,三級(jí)品3/.

用樣本的頻率分布估計(jì)總體分布,問哪個(gè)方案種植戶的收益更高?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】今年情況特殊,小王在居家自我隔離時(shí)對(duì)周邊的水產(chǎn)養(yǎng)殖產(chǎn)業(yè)進(jìn)行了研究.、兩個(gè)投資項(xiàng)目的利潤率分別為投資變量.根據(jù)市場(chǎng)分析,的分布列分別為:

5%

10%

0.8

0.2

2%

8%

12%

0.2

0.5

0.3

1)若在兩個(gè)項(xiàng)目上各投資萬元,分別表示投資項(xiàng)目所獲得的利潤,求方差,

2)若在兩個(gè)項(xiàng)目上共投資萬元,那么如何分配,能使投資項(xiàng)目所得利潤的方差與投資項(xiàng)目所得利潤的方差的和最小,最小值是多少?

(注:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)若,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)任意,給定區(qū)間,設(shè)函數(shù)表示實(shí)數(shù)所屬的給定區(qū)間內(nèi)唯一整數(shù)之差的絕對(duì)值.

1)當(dāng)時(shí),求出的解析式;時(shí),寫出絕對(duì)值符號(hào)表示的解析式;

2)求,判斷函數(shù)的奇偶性,并證明你的結(jié)論;

3)當(dāng)時(shí),求方程的實(shí)根.(要求說明理由,

查看答案和解析>>

同步練習(xí)冊(cè)答案