【題目】平面向量,共線的充要條件是(

A.

B.,兩向量中至少有一個(gè)為零向量

C.λR

D.存在不全為零的實(shí)數(shù)λ1,λ2

【答案】D

【解析】

根據(jù)共線向量基本定理,結(jié)合充分條件的定義進(jìn)行求解即可.

A成立時(shí),說(shuō)明兩個(gè)非零向量的夾角為零度,但是非零兩個(gè)向量共線時(shí),它們的夾角可以為平角,故本選項(xiàng)是錯(cuò)誤的;

B:兩個(gè)非零向量也可以共線,故本選項(xiàng)是錯(cuò)誤的;

C:只有當(dāng)不是零向量時(shí)才成立,故本選項(xiàng)是錯(cuò)誤的;

D:當(dāng)平面向量共線時(shí),存在一個(gè)λ,使得成立,因此存在不全為零的實(shí)數(shù)λ1,λ2,;

當(dāng)存在不全為零的實(shí)數(shù)λ1,λ2成立時(shí),若實(shí)數(shù)λ1,λ2不都為零時(shí),

則有成立,顯然,共線,若其中實(shí)數(shù)λ1,λ2有一個(gè)為零時(shí),不妨設(shè)

,則有,所以平面向量,共線,所以本選項(xiàng)是正確的.

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】垃圾分類是對(duì)垃圾進(jìn)行有效處置的一種科學(xué)管理方法,為了了解居民對(duì)垃圾分類的知曉率和參與率,引導(dǎo)居民積極行動(dòng),科學(xué)地進(jìn)行垃圾分類,某小區(qū)隨機(jī)抽取年齡在區(qū)間[25,85]上的50人進(jìn)行調(diào)研,統(tǒng)計(jì)出年齡頻數(shù)分布及了解垃圾分類的人數(shù)如表:

1)填寫下面2x2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為以65歲為分界點(diǎn)居民對(duì)了解垃圾分類的有關(guān)知識(shí)有差異;

2)若對(duì)年齡在[4555),[25,35)的被調(diào)研人中各隨機(jī)選取2人進(jìn)行深入調(diào)研,記選中的4人中不了解垃圾分類的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

參考公式和數(shù)據(jù)K2,其中na+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),有下列四個(gè)結(jié)論:

為偶函數(shù);②的值域?yàn)?/span>;

上單調(diào)遞減;④上恰有8個(gè)零點(diǎn),

其中所有正確結(jié)論的序號(hào)為(

A.①③B.②④C.①②③D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一顆棋子從三棱柱的一個(gè)項(xiàng)點(diǎn)沿棱移到相鄰的另一個(gè)頂點(diǎn)的概率均為,剛開始時(shí),棋子在上底面點(diǎn)處,若移了次后,棋子落在上底面頂點(diǎn)的概率記為.

1)求,的值:

2)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大型科學(xué)競(jìng)技真人秀節(jié)目挑選選手的方式為:不但要對(duì)選手的空間感知、照相式記憶能力進(jìn)行考核,而且要讓選手經(jīng)過(guò)名校最權(quán)威的腦力測(cè)試,120分以上才有機(jī)會(huì)入圍.某重點(diǎn)高校準(zhǔn)備調(diào)查腦力測(cè)試成績(jī)是否與性別有關(guān),在該高校隨機(jī)抽取男、女學(xué)生各100名,然后對(duì)這200名學(xué)生進(jìn)行腦力測(cè)試.規(guī)定:分?jǐn)?shù)不小于120分為入圍學(xué)生,分?jǐn)?shù)小于120分為未入圍學(xué)生.已知男生入圍24人,女生未入圍80人.

1)根據(jù)題意,填寫下面的2×2列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有95%以上的把握認(rèn)為腦力測(cè)試后是否為入圍學(xué)生與性別有關(guān);

性別

入圍人數(shù)

未入圍人數(shù)

總計(jì)

男生

女生

總計(jì)

2)用分層抽樣的方法從入圍學(xué)生中隨機(jī)抽取11名學(xué)生,求這11名學(xué)生中男、女生人數(shù);若抽取的女生的腦力測(cè)試分?jǐn)?shù)各不相同(每個(gè)人的分?jǐn)?shù)都是整數(shù)),分別求這11名學(xué)生中女生測(cè)試分?jǐn)?shù)平均分的最小值.

附:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的極值點(diǎn)個(gè)數(shù);

2)若有兩個(gè)極值點(diǎn),試判斷的大小關(guān)系并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱中,側(cè)面為菱形,的中點(diǎn)為O,且平面

1)證明:;

2)若,,求到平面ABC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是邊長(zhǎng)為4的菱形,∠BAD=60°,對(duì)角線ACBD相交于點(diǎn)O,四邊形ACFE為梯形,EF//AC,點(diǎn)E在平面ABCD上的射影為OA的中點(diǎn),AE與平面ABCD所成角為45°.

(Ⅰ)求證:BD⊥平面ACF;

(Ⅱ)求平面DEF與平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=|2x1|3|x+1|,設(shè)fx)的最大值為M.

1)求M;

2)若正數(shù)ab滿足Mab,證明:a4b+ab4.

查看答案和解析>>

同步練習(xí)冊(cè)答案