【題目】π為圓周率,e=2.718 28…為自然對(duì)數(shù)的底數(shù).

(1)求函數(shù)f(x)= 的單調(diào)區(qū)間;

(2)e3,3e,eπ,πe,3π,π36個(gè)數(shù)中的最大數(shù)與最小數(shù).

【答案】(1) 函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,e),單調(diào)遞減區(qū)間為(e,+);(2) 最大數(shù)是3π,最小數(shù)是3e.

【解析】

(1)利用導(dǎo)數(shù)求函數(shù)f(x)= 的單調(diào)區(qū)間.(2)先分析得到6個(gè)數(shù)的最大數(shù)在π33π之中,最小數(shù)在3ee3之中,再利用第1問(wèn)的結(jié)論得到6個(gè)數(shù)中的最大數(shù)是3π,最小數(shù)是3e.

(1)函數(shù)f(x)的定義域?yàn)?/span>(0,+).

因?yàn)?/span>f(x)=,所以f(x)=.

當(dāng)f(x)>0,即0<x<e時(shí),函數(shù)f(x)單調(diào)遞增;

當(dāng)f(x)<0,即x>e時(shí),函數(shù)f(x)單調(diào)遞減.

故函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,e),單調(diào)遞減區(qū)間為(e,+).

(2)因?yàn)?/span>e<3<π,所以eln 3<eln π,πl(wèi)n e<πl(wèi)n 3,即ln 3e<ln πe,ln eπ<ln 3π.

于是根據(jù)函數(shù)y=ln xy=ex,y=πx在定義域上單調(diào)遞增,可得3e<πe<π3,e3<eπ<3π.

故這6個(gè)數(shù)的最大數(shù)在π33π之中,最小數(shù)在3ee3之中.

e<3<π(1)的結(jié)論,得f(π)<f(3)<f(e),

.

,得ln π3<ln 3π,所以3π>π3;

,得ln 3e<ln e3,所以3e<e3.

綜上,6個(gè)數(shù)中的最大數(shù)是3π,最小數(shù)是3e.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著經(jīng)濟(jì)的發(fā)展和人民生活水平的提高,以及城市垃圾分類收集的實(shí)施和推廣,我國(guó)居民生活垃圾的平均熱值逐年.上升,垃圾焚燒發(fā)電的噸上網(wǎng)電量(單位:千瓦時(shí)/噸)顯著增加.下表為某垃圾焚燒發(fā)電廠最近五個(gè)月的生產(chǎn)數(shù)據(jù).

月份代碼

噸上網(wǎng)電量

若從該發(fā)電廠這五個(gè)月的生產(chǎn)數(shù)據(jù)(噸上網(wǎng)電量)中任選兩個(gè),求其中至少有一個(gè)生產(chǎn)數(shù)據(jù)超過(guò)的概率;

通過(guò)散點(diǎn)圖(如圖)可以發(fā)現(xiàn),變量之間的關(guān)系可以用函數(shù)(其中為自然對(duì)數(shù)的底數(shù))來(lái)擬合,求常數(shù),的值.

參考公式:對(duì)于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計(jì)公式分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:千元)對(duì)年銷售量y(單位:t)和年利潤(rùn)z(單位:千元)的影響,對(duì)近8年的年宣傳費(fèi)和年銷售量)數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

46.6

563

6.8

289.8

1.6

1.469

108.8

表中,

1)根據(jù)散點(diǎn)圖判斷,哪一個(gè)適宜作為年銷售量y關(guān)于年宣傳費(fèi)x的回歸方類型?給出判斷即可,不必說(shuō)明理由

2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;

3)已知這種產(chǎn)品的年利潤(rùn)zx、y的關(guān)系為根據(jù)(2)的結(jié)果回答下列問(wèn)題:

①年宣傳費(fèi)時(shí),年銷售量及年利潤(rùn)的預(yù)報(bào)值是多少?

②年宣傳費(fèi)x為何值時(shí),年利潤(rùn)的預(yù)報(bào)值最大?

附:對(duì)于一組數(shù)據(jù),其回歸線的斜率和截距的最小二乘估計(jì)分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,原點(diǎn)為,橢圓的動(dòng)弦過(guò)焦點(diǎn)且不垂直于坐標(biāo)軸,弦的中點(diǎn)為,過(guò)且垂直于線段的直線交射線于點(diǎn)

(1)證明:點(diǎn)在定直線上;

(2)當(dāng)最大時(shí),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為

(1)求直線的直角坐標(biāo)方程與曲線的普通方程;

(2)若是曲線上的動(dòng)點(diǎn),為線段的中點(diǎn),求點(diǎn)到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若存在一個(gè)實(shí)數(shù),使得成立,則稱為函數(shù)的一個(gè)不動(dòng)點(diǎn),設(shè)函數(shù) 為自然對(duì)數(shù)的底數(shù)),定義在上的連續(xù)函數(shù)滿足,且當(dāng)時(shí), .若存在,且為函數(shù)的一個(gè)不動(dòng)點(diǎn),則實(shí)數(shù)的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是直角梯形,,,側(cè)面底面,且,為棱上一點(diǎn),且

1)求證:平面;

2)若二面角的余弦值為,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為,曲線的參數(shù)方程為為參數(shù)).

1)若直線平行于直線,且與曲線只有一個(gè)公共點(diǎn),求直線的方程;

2)若直線與曲線交于兩點(diǎn),,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某種氣墊船的最大航速是海里小時(shí),船每小時(shí)使用的燃料費(fèi)用和船速的平方成正比.若船速為海里小時(shí),則船每小時(shí)的燃料費(fèi)用為元,其余費(fèi)用(不論船速為多少)都是每小時(shí)元。甲乙兩地相距海里,船從甲地勻速航行到乙地.

(1)試把船從甲地到乙地所需的總費(fèi)用,表示為船速(海里小時(shí))的函數(shù),并指出函數(shù)的定義域;

(2)當(dāng)船速為每小時(shí)多少海里時(shí),船從甲地到乙地所需的總費(fèi)用最少?最少費(fèi)用為多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案