11.若關(guān)于x的不等式|ax-2|<6的解集為{x|-$\frac{4}{3}$<x<$\frac{8}{3}$}
(1)求a的值;
(2)若b=1,求$\sqrt{-at+12}$+$\sqrt{3bt}$的最大值.

分析 (1)依題意知-$\frac{4}{3}$和$\frac{8}{3}$是方程|ax-2|=6的兩個根,由此可得方程,即可求a的值;
(2)利用柯西不等式,即可求$\sqrt{-at+12}$+$\sqrt{3bt}$的最大值.

解答 解:(1)依題意知-$\frac{4}{3}$和$\frac{8}{3}$是方程|ax-2|=6的兩個根,則$\left\{\begin{array}{l}{|-\frac{4}{3}a-2|=6}\\{|\frac{8}{3}a-2|=6}\end{array}\right.$,∴a=3.
(2)$\sqrt{-3t+12}$+$\sqrt{3t}$≤$\sqrt{(1+1)(-3t+12+3t)}$=2$\sqrt{6}$,當(dāng)且僅當(dāng)$\sqrt{-3t+12}$=$\sqrt{3t}$,即t=2時等號成立.
∴$\sqrt{-at+12}$+$\sqrt{3bt}$的最大值為2$\sqrt{6}$.

點評 本題考查絕對值不等式的解法,考查柯西不等式的運用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=3+5cosα}\\{y=4+5sinα}\end{array}\right.$,(α為參數(shù)),A,B在曲線C上,以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,A,B兩點的極坐標(biāo)分別為A(ρ1,$\frac{π}{6}$),B(ρ2,$\frac{π}{2}$)
(Ⅰ)求曲線C的極坐標(biāo)方程;
(Ⅱ)設(shè)曲線C的中心為M,求△MAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知f(x)=ax3-xlnx,若?x1、x2∈(0,+∞)且x1≠x2,不等式(x12-x22)(f(x1)-f(x2))>0恒成立,則實數(shù)a的取值范圍是$[\frac{e}{6},+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖,在邊長為2的正方形ABCD中,M是AB的中點,過C,M,D三點的拋物線與CD圍成陰影部分,則向正方形內(nèi)撒一粒黃豆落在陰影部分的概率是( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知數(shù)列{an}中,設(shè)a1=1,an+1=3an+1(n∈N*),若bn=$\frac{n}{({3}^{n}-1)•{2}^{n-2}}$•an,Tn是{bn}的前n項和,若不等式2nλ<2n-1Tn+n對一切的n∈N+恒成立,則實數(shù)λ的取值范圍是(-∞,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)$f(x)=\frac{{{e^x}-{e^{-x}}}}{ln|x|}$的圖象大致是( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知數(shù)列{an}的前n項和為Sn,且${a_1}=1,{a_{n+1}}•{a_n}={2^n}(n∈{N^*})$,則S2016=( 。
A.3•21008-3B.22016-1C.22009-3D.22008-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若函數(shù)f(x)=2sin(2x+φ)(0<φ<$\frac{π}{2}$)的圖象過點(0,$\sqrt{3}$),則函數(shù)f(x)在[0,π]上的單調(diào)減區(qū)間是[$\frac{π}{12}$,$\frac{7π}{12}$]【或($\frac{π}{12}$,$\frac{7π}{12}$)也正確】.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若P為可行域$\left\{\begin{array}{l}x≥-1\\ y≤2\\ 2x-y+2≤0\end{array}\right.$內(nèi)的一點,過P的直線l與圓O:x2+y2=7交于A,B兩點,則|AB|的最小值為(  )
A.$2\sqrt{3}$B.$\sqrt{3}$C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案