8.如圖,在四棱錐P-ABCD中,四邊形ABCD為平行四邊形,AC,BD相交于點(diǎn)O,點(diǎn)E為PC的中點(diǎn),OP=OC,PA⊥PD.求證:
(1)直線PA∥平面BDE;
(2)平面BDE⊥平面PCD.

分析 (1)連結(jié)OE,說明OE∥PA.然后證明PA∥平面BDE.
(2)證明OE⊥PD.OE⊥PC.推出OE⊥平面PCD.然后證明平面BDE⊥平面PCD.

解答 證明:(1)連結(jié)OE,因?yàn)镺為平行四邊形ABCD對(duì)角線的交點(diǎn),所以O(shè)為AC中點(diǎn).
又因?yàn)镋為PC的中點(diǎn),
所以O(shè)E∥PA.  …4分
又因?yàn)镺E?平面BDE,PA?平面BDE,
所以直線PA∥平面BDE.  …6分
(2)因?yàn)镺E∥PA,PA⊥PD,所以O(shè)E⊥PD.  …8分
因?yàn)镺P=OC,E為PC的中點(diǎn),所以O(shè)E⊥PC. …10分
又因?yàn)镻D?平面PCD,PC?平面PCD,PC∩PD=P,
所以O(shè)E⊥平面PCD. …12分
又因?yàn)镺E?平面BDE,所以平面BDE⊥平面PCD.  …14分.

點(diǎn)評(píng) 本題考查平面與平面垂直的判定定理的應(yīng)用,直線與平面平行的判定定理的應(yīng)用,考查空間想象能力以及邏輯推理能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知△ABC外接圓半徑是2,$BC=2\sqrt{3}$,則△ABC的面積最大值為$3\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)F在x軸的正半軸上,過點(diǎn)F的直線l與拋物線C相交于A、B兩點(diǎn),且滿足$\overrightarrow{OA}•\overrightarrow{OB}=-\frac{3}{4}$.
(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)M在拋物線C的準(zhǔn)線上運(yùn)動(dòng),其縱坐標(biāo)的取值范圍是[-1,1],且$\overrightarrow{MA}•\overrightarrow{MB}=9$,點(diǎn)N是以線段AB為直徑的圓與拋物線C的準(zhǔn)線的一個(gè)公共點(diǎn),求點(diǎn)N的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)離心率為$\frac{\sqrt{2}}{2}$,左、右焦點(diǎn)分別為F1,F(xiàn)2,左頂點(diǎn)為A,|AF1|=$\sqrt{2}$-1
(Ⅰ) 求橢圓的方程;
(Ⅱ) 若直線l經(jīng)過F2與橢圓交于M,N兩點(diǎn),求$\overrightarrow{{F_1}M}$•$\overrightarrow{{F_1}N}$取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.抽樣統(tǒng)計(jì)甲、乙兩名學(xué)生的5次訓(xùn)練成績(單位:分),結(jié)果如下:
學(xué)生第1次第2次第3次第4次第5次
6580708575
8070758070
則成績較為穩(wěn)定(方差較。┑哪俏粚W(xué)生成績的方差為20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知向量$[\begin{array}{l}\;1\\-1\end{array}]$是矩陣A的屬于特征值-1的一個(gè)特征向量.在平面直角坐標(biāo)系xOy中,點(diǎn)P(1,1)在矩陣A對(duì)應(yīng)的變換作用下變?yōu)镻'(3,3),求矩陣A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x-1≥1\\ x-y≤0\\ x+y-4≤0\end{array}\right.$,則2x+y的最大值為( 。
A.5B.4C.6D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的一個(gè)焦點(diǎn)為F(3,0),其左頂點(diǎn)A在圓O:x2+y2=12上.
(1)求橢圓C的方程;
(2)直線l:x=my+3(m≠0)交橢圓C于M,N兩點(diǎn),設(shè)點(diǎn)N關(guān)于x軸的對(duì)稱點(diǎn)為N1(點(diǎn)N1與點(diǎn)M不重合),且直線N1M與x軸的交于點(diǎn)P,試問△PMN的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.命題“?x0∈(1,+∞),x02+2x0+2≤0”的否定形式是(  )
A.$?x∈(1,+∞),x_0^2+2{x_0}+2>0$B.$?x∈({-∞,1}],x_0^2+2{x_0}+2>0$
C.$?{x_0}∈(1,+∞),x_0^2+2{x_0}+2>0$D.$?{x_0}∈({-∞,1}],x_0^2+2{x_0}+2>0$

查看答案和解析>>

同步練習(xí)冊(cè)答案