已知點P(x,y)是直線kx+y+4=0上一動點,PA,PB是圓C:x2+y2-2y=0的兩條切線,A,B為切點,若四邊形PACB的最小面積是2,則k的值為
 
考點:圓的切線方程
專題:計算題,直線與圓
分析:由圓的方程為求得圓心C,半徑r,由“若四邊形面積最小,則圓心與點P的距離最小時,即距離為圓心到直線的距離時,切線長PA,PB最小”,最后利用點到直線的距離求出直線的斜率即可..
解答: 解:∵圓的方程為:x2+(y-1)2=1,
∴圓心C(0,1),半徑r=1.
根據(jù)題意,若四邊形面積最小,當圓心與點P的距離最小時,即距離為圓心到直線l的距離最小時,切線長PA,PB最。芯長為2,
∴PA=PB═2,
∴圓心到直線l的距離為d=
5

∵直線kx+y+4=0,
5
=
5
k2+1
,解得k=±2,
所求直線的斜率為:±2.
故答案為:±2
點評:本題的考點是直線與圓的位置關系,主要涉及了構造四邊形及其面積的求法,解題的關鍵是“若四邊形面積最小,則圓心與點P的距離最小時,即距離為圓心到直線的距離時,切線長PA,PB最小”屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的通項公式為an=-n2+10n+11,試作出其圖象,并判斷數(shù)列的增減性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知cos(60°+α)=
1
3
,且α為第三象限角,則cos(30°-α)+sin(30°-α)的值為( 。
A、
-2
2
-1
3
B、
2
2
+1
3
C、
-2
2
+1
3
D、
2
2
-1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題“若函數(shù)f(x)=logax(a>0,a≠1)在其定義域內是減函數(shù),則loga2<0”的逆否命題是( 。
A、若loga2<0,則函數(shù)f(x)=logax(a>0,a≠1)在其定義域內不是減函數(shù)
B、若loga2≥0,則函數(shù)f(x)=logax(a>0,a≠1)在其定義域內不是減函數(shù)
C、若loga2<0,則函數(shù)f(x)=logax(a>0,a≠1)在其定義域內是減函數(shù)
D、若loga2≥0,則函數(shù)f(x)=logax(a>0,a≠1)在其定義域內是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求斜率為3,且被圓x2+y2=4截得弦長為2的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y是兩個具有線性相關關系的變量,現(xiàn)有這兩個變量的十個樣本點(x1,y1)(x2,y2),…,(x10,y10),同學甲利用最小二乘法得到回歸直線l1:y=bx+a,同學乙將十個樣本點中的兩個點連起來得到擬合直線l2:y=dx+c,則下列判斷一定正確的是( 。
A、
10
i=1
(yi-bxi-a)2
10
i=1
(yi-dxi-c)2
B、
10
i=1
(yi-bxi-a)2
10
i=1
(yi-dxi-c)2
C、
10
i=1
|yi-bxi-a|
10
i=1
|yi-dxi-c|
D、
10
i=1
|yi-bxi-a|
10
i=1
|yi-dxi-c|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在(-1,1)上的函數(shù)f(x)滿足:對任意x,y∈(-1,1),都有f(x)+f(y)=f(
x+y
1+xy
),求證:f(x)為奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)若|cosθ|=-cosθ,且tanθ<0,試判斷
sin(cosθ)
cos(sinθ)
的符號;
(2)若tan(cosθ)•tan(sinθ)>0,試求出θ所在象限,并用圖形表示
θ
2
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設實數(shù)a1,d為等差數(shù)列{an}的首項和公差.若a6=-
3
a5
,則d的取值范圍是
 

查看答案和解析>>

同步練習冊答案