求斜率為3,且被圓x2+y2=4截得弦長為2的直線方程.
考點:直線與圓相交的性質(zhì)
專題:計算題,直線與圓
分析:先設(shè)直線的方程,再求出圓心到直線的距離,再由半徑的平方等于圓心到直線的距離平方與弦長一半的平方的和建立方程求解.
解答: 解:設(shè)直線的方程為:y=3x+b,圓心到直線的距離為d=
|b|
10

則由半徑的平方等于圓心到直線的距離平方與弦長一半的平方的和得
b2
10
+1=4

解得b=±
30

故直線方程為y=3x±
30
點評:本題主要考查直線方程,考查直線與圓的位置關(guān)系,在相交時半徑的平方等于圓心到直線的距離平方與弦長一半的平方的和的靈活運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知an=-2n2+9n+3,則數(shù)列{an}中的最大項為(  )
A、a1=10
B、a2=13
C、a3=12
D、以上均不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=2sin2x圖象上的所有點向右平移
π
6
個單位,然后把圖象上所有點的橫坐標(biāo)縮短為原來的
1
2
倍,(縱坐標(biāo)不變)得到y(tǒng)=f(x)的圖象,則f(x)等于( 。
A、2sin(x-
π
6
B、2sin(x-
π
3
C、2sin(4x-
π
6
D、2sin(4x-
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求y=
3
2
3
-
1
2
x+
9+x2
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由曲線y=
x
與y=x3所圍成的封閉圖形的面積是( 。
A、
11
12
B、
5
12
C、
2
3
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P(x,y)是直線kx+y+4=0上一動點,PA,PB是圓C:x2+y2-2y=0的兩條切線,A,B為切點,若四邊形PACB的最小面積是2,則k的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(ax3+
1
x
)7
的展開式中,常數(shù)項為14,則a=
 
(用數(shù)字填寫答案).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題“?x0∈R,e-|x0|-m≤0”是假命題,則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的公比為q,前n項和為Sn,且S3,S9,S6成等差數(shù)列,則q3等于( 。
A、-1或
1
2
B、1或-
1
2
C、1
D、-
1
2

查看答案和解析>>

同步練習(xí)冊答案