精英家教網 > 高中數學 > 題目詳情

【題目】某企業(yè)招聘中,依次進行A科、B科考試,當A科合格時,才可考B科,且兩科均有一次補考機會,兩科都合格方通過.甲參加招聘,已知他每次考A科合格的概率均為 ,每次考B科合格的概率均為 .假設他不放棄每次考試機會,且每次考試互不影響.
(I)求甲恰好3次考試通過的概率;
(II)記甲參加考試的次數為ξ,求ξ的分布列和期望.

【答案】解:設甲“第一次考A科成績合格”為事件A1,“A科補考后成績合格”為事件A2,

“第一次考B科成績合格”為事件B1,“B科補考后成績合格”為事件B2

(Ⅰ)甲參加3次考試通過的概率為:

(Ⅱ)由題意知,ξ可能取得的值為:2,3,4

=

分布列(如表)

ξ

2

3

4

P


【解析】(I)甲參加3次考試通過分兩種情況:A科考兩次B科考一次和A科考一次B科考兩次,分別計算每種情況的概率,進而可得甲恰好3次考試通過的概率;(II)先分別求出隨機變量的所有可能取值的概率,再寫出分布列,進而可得期望.
【考點精析】解答此題的關鍵在于理解離散型隨機變量及其分布列的相關知識,掌握在射擊、產品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知圓,直線, .

(1)求證:對,直線與圓總有兩個不同的交點;

(2)求弦的中點的軌跡方程,并說明其軌跡是什么曲線.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線y2=4 x的焦點為F,A、B為拋物線上兩點,若 =3 ,O為坐標原點,則△AOB的面積為( )
A.8
B.4
C.2
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知ABC三個頂點坐標為A(78),B(10,4),C(2,-4)

(1)求BC邊上的中線所在直線的方程;

(2)求BC邊上的高所在直線的方程.

【答案】(1);(2)

【解析】試題分析:(1)根據中點坐標公式求出中點的坐標,根據斜率公式可求得的斜率,利用點斜式可求邊上的中線所在直線的方程;(2)先根據斜率公式求出的斜率,從而求出邊上的高所在直線的斜率為,利用點斜式可求邊上的高所在直線的方程.

試題解析:1)由B(10,4)C(2,-4),BC中點D的坐標為(6,0),

所以AD的斜率為k8,

所以BC邊上的中線AD所在直線的方程為y08(x6),

8xy480

2)由B(104),C(2,-4),BC所在直線的斜率為k1,

所以BC邊上的高所在直線的斜率為-1,

所以BC邊上的高所在直線的方程為y8=-(x7),即xy150

型】解答
束】
17

【題目】已知直線lx2y2m20

(1)求過點(23)且與直線l垂直的直線的方程;

(2)若直線l與兩坐標軸所圍成的三角形的面積大于4,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】徐州市為加快新老城區(qū)的融合并進一步緩解交通壓力,現經過食品城至新城區(qū)(昆侖大道)和食品城至高速入口(迎賓大道),分別修建地鐵2號線和快速通道,如圖,已知兩條公路夾角為60°,為了便于施工擬在兩條公路之間的區(qū)域內建一混凝土攪拌站P,并分別在兩條公路邊上建兩個中轉站M、N (異于點A),要求PMPNMN=2(單位:千米).

(1)

(2)為多大時,使得混凝土攪拌站產生的噪聲對食品城的影響最小(即攪拌站與食品城的距離最遠).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量 , (m>0,n>0),若m+n∈[1,2],則 的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知命題 :“函數 在區(qū)間 上單調遞減”;命題 :“存在正數 ,使得 成立”,若 為真命題,則 的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,則輸出s的值為( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x2+m與函數 的圖象上至少存在一對關于x軸對稱的點,則實數m的取值范圍是(
A.
B.
C.
D.[2﹣ln2,2]

查看答案和解析>>

同步練習冊答案