【題目】已知圓,直線, .
(1)求證:對,直線與圓總有兩個不同的交點;
(2)求弦的中點的軌跡方程,并說明其軌跡是什么曲線.
【答案】(1)見解析(2) 的軌跡方程是,它是一個以為圓心,以為半徑的圓
【解析】試題分析:(1)利用圓心到直線的距離與圓的半徑之間的關系,即可判定直線與圓總有兩個不同的交點;
(2)設中點為,當直線的斜率存在時,利用∵,化簡得;當直線的斜率不存在時, ,此時中點為,即可得到中點的軌跡方程;
試題解析:
證明:(1)圓的圓心為,半徑為,
所以圓心到直線的距離.
所以直線與圓相交,即直線與圓總有兩個不同的交點;
(2)設中點為,
因為直線恒過定點,
當直線的斜率存在時, ,又,
∵,∴
化簡得.
當直線的斜率不存在時, ,
此時中點為,也滿足上述方程.
所以的軌跡方程是,
它是一個以為圓心,以為半徑的圓.
科目:高中數學 來源: 題型:
【題目】如圖,在正四棱錐P﹣ABCD中,AB=2,PA= ,E是棱PC的中點,過AE作平面分別與棱PB、PD交于M、N兩點.
(1)若PM= PB,PN=λPD,求λ的值;
(2)求直線PA與平面AMEN所成角的正弦值的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在中, AD與BC交于點M,設,以、為基底表示
【答案】
【解析】試題分析:由A、M、D三點共線,知;由C、M、B三點共線,知
,所以,所以=.
試題解析:
設,
則
因為A、M、D三點共線,所以,即
又
因為C、M、B三點共線,所以,即
由解得,所以
【題型】解答題
【結束】
20
【題目】函數的最小值為.
(1)求;
(2)若,求及此時的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}滿足:2a1+22a2+23a3+…+2nan=n(n∈N*),數列{ }的前n項和為Sn , 則S1S2S3…S10= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】北京時間3月10日,CBA半決賽開打,采用7局4勝制(若某對取勝四場,則終止本次比賽,并獲得進入決賽資格),采用2﹣3﹣2的賽程,遼寧男籃將與新疆男籃爭奪一個決賽名額,由于新疆隊常規(guī)賽占優(yōu),決賽時擁有主場優(yōu)勢(新疆先兩個主場,然后三個客場,再兩個主場),以下是總決賽賽程:
日期 | 比賽隊 | 主場 | 客場 | 比賽時間 | 比賽地點 |
17年3月10日 | 新疆﹣遼寧 | 新疆 | 遼寧 | 20:00 | 烏魯木齊 |
17年3月12日 | 新疆﹣遼寧 | 新疆 | 遼寧 | 20:00 | 烏魯木齊 |
17年3月15日 | 遼寧﹣新疆 | 遼寧 | 新疆 | 20:00 | 本溪 |
17年3月17日 | 遼寧﹣新疆 | 遼寧 | 新疆 | 20:00 | 本溪 |
17年3月19日 | 遼寧﹣新疆 | 遼寧 | 新疆 | 20:00 | 本溪 |
17年3月22日 | 新疆﹣遼寧 | 新疆 | 遼寧 | 20:00 | 烏魯木齊 |
17年3月24日 | 新疆﹣遼寧 | 新疆 | 遼寧 | 20:00 | 烏魯木齊 |
(1)若考慮主場優(yōu)勢,每個隊主場獲勝的概率均為 ,客場取勝的概率均為 ,求遼寧隊以比分4:1獲勝的概率;
(2)根據以往資料統(tǒng)計,每場比賽組織者可獲得門票收入50萬元(與主客場無關),若不考慮主客場因素,每個隊每場比賽獲勝的概率均為 ,設本次半決賽中(只考慮這兩支隊)組織者所獲得的門票收入為X,求X的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《九章算術》是我國古代數學經典名著,它在集合學中的研究比西方早1千年,在《九章算術》中,將四個面均為直角三角形的四面體稱為鱉臑,已知某“鱉臑”的三視圖如圖所示,則該鱉臑的外接球的表面積為( )
A.200π
B.50π
C.100π
D. π
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,以原點O為極點,x軸的正半軸為極軸,建立極坐標系,曲線C1的參數方程為 (θ為參數),曲線 C2的極坐標方程為ρcosθ﹣ ρsinθ﹣4=0.
(1)求曲線C1的普通方程和曲線 C2的直角坐標方程;
(2)設P為曲線C1上一點,Q為曲線 C2上一點,求|PQ|的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業(yè)招聘中,依次進行A科、B科考試,當A科合格時,才可考B科,且兩科均有一次補考機會,兩科都合格方通過.甲參加招聘,已知他每次考A科合格的概率均為 ,每次考B科合格的概率均為 .假設他不放棄每次考試機會,且每次考試互不影響.
(I)求甲恰好3次考試通過的概率;
(II)記甲參加考試的次數為ξ,求ξ的分布列和期望.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com