已知拋物線上一定點(diǎn)B(-1,0)和兩個(gè)動(dòng)點(diǎn),當(dāng)時(shí),點(diǎn)的橫坐標(biāo)的取值范圍是
A.B.
C.D.(-∞,-3]∪
D

試題分析:設(shè)P(t,t2-1),Q(s,s2-1),∵BP⊥PQ,
=-1,
即t2+(s-1)t-s+1=0
∵t∈R,P,Q是拋物線上兩個(gè)不同的點(diǎn),∴必須有△=(s-1)2+4(s-1)≥0.
即s2+2s-3≥0,解得s≤-3或s≥1.
∴Q點(diǎn)的橫坐標(biāo)的取值范圍是 (-∞,-3]∪[1,+∞),故選D。
點(diǎn)評(píng):中檔題,解題的關(guān)鍵是利用斜率之積為-1構(gòu)建方程,再利用方程根的判別式大于等于0進(jìn)行求解
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知的頂點(diǎn)A在射線上,兩點(diǎn)關(guān)于x軸對(duì)稱,0為坐標(biāo)原點(diǎn),且線段AB上有一點(diǎn)M滿足當(dāng)點(diǎn)A在上移動(dòng)時(shí),記點(diǎn)M的軌跡為W.
(Ⅰ)求軌跡W的方程;
(Ⅱ)設(shè)是否存在過(guò)的直線與W相交于P,Q兩點(diǎn),使得若存在,
求出直線;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)點(diǎn)且與拋物線只有一個(gè)公共點(diǎn)的直線有( ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

橢圓的離心率為,兩焦點(diǎn)分別為,點(diǎn)M是橢圓C上一點(diǎn),的周長(zhǎng)為16,設(shè)線段MO(O為坐標(biāo)原點(diǎn))與圓交于點(diǎn)N,且線段MN長(zhǎng)度的最小值為.
(1)求橢圓C以及圓O的方程;
(2)當(dāng)點(diǎn)在橢圓C上運(yùn)動(dòng)時(shí),判斷直線與圓O的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,橢圓的左焦點(diǎn)為,過(guò)點(diǎn)的直線交橢圓于,兩點(diǎn).當(dāng)直線經(jīng)過(guò)橢圓的一個(gè)頂點(diǎn)時(shí),其傾斜角恰為

(Ⅰ)求該橢圓的離心率;
(Ⅱ)設(shè)線段的中點(diǎn)為的中垂線與軸和軸分別交于兩點(diǎn),
記△的面積為,△為原點(diǎn))的面積為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知拋物線y2=4x的準(zhǔn)線過(guò)雙曲線=1(a>0,b>0)的左頂點(diǎn),且此雙曲線的一條漸
近線方程為y=2x,則雙曲線的焦距等于 (  ).
A.B.2C.D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知中心在原點(diǎn)的雙曲線C的右焦點(diǎn)為(2,0),右頂點(diǎn)為
(1)求雙曲線C的方程;
(2)若直線與雙曲線C恒有兩個(gè)不同的交點(diǎn)A和B,且(其中O為原點(diǎn)). 求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系中,點(diǎn)到兩點(diǎn)的距離之和為,設(shè)點(diǎn)的軌跡為曲線.
(1)寫(xiě)出的方程;
(2)設(shè)過(guò)點(diǎn)的斜率為)的直線與曲線交于不同的兩點(diǎn),,點(diǎn)軸上,且,求點(diǎn)縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)P是雙曲線C左支上一點(diǎn),F1,F2是雙曲線的左、右兩個(gè)焦點(diǎn),且PF1PF2PF2與兩條漸近線相交于M,N兩點(diǎn)(如圖),點(diǎn)N恰好平分線段PF2,則雙曲線的離心率是(   )
A.B.2C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案