已知中心在原點(diǎn)的雙曲線C的右焦點(diǎn)為(2,0),右頂點(diǎn)為
(1)求雙曲線C的方程;
(2)若直線與雙曲線C恒有兩個(gè)不同的交點(diǎn)A和B,且(其中O為原點(diǎn)). 求k的取值范圍.
(Ⅰ)(Ⅱ

試題分析:(Ⅰ)設(shè)雙曲線方程為 
由已知得
故雙曲線C的方程為   .4分
(Ⅱ)將 
由直線l與雙曲線交于不同的兩點(diǎn)得
①     6分
設(shè),則


   8分
于是
   ②     10分
由①、②得  
故k的取值范圍為    12分
點(diǎn)評(píng):解答雙曲線綜合題時(shí),應(yīng)根據(jù)其幾何特征熟練的轉(zhuǎn)化為數(shù)量關(guān)系(如方程、函數(shù)),再結(jié)合代數(shù)方法解答,這就要學(xué)生在解決問題時(shí)要充分利用數(shù)形結(jié)合、設(shè)而不求、弦長公式及韋達(dá)定理綜合思考,重視對(duì)稱思想、函數(shù)與方程思想、等價(jià)轉(zhuǎn)化思想的應(yīng)用
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓過點(diǎn),其長軸、焦距和短軸的長的平方依次成等差數(shù)列.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線與軸正半軸、軸分別交于點(diǎn),與橢圓分別交于點(diǎn),各點(diǎn)均不重合,且滿足,. 當(dāng)時(shí),試證明直線過定點(diǎn).過定點(diǎn)(1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線上的一動(dòng)點(diǎn)到直線距離的最小值是   (  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知滿足,記目標(biāo)函數(shù)的最大值為7,最小值為1,則 (     )
A.2B.1C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線上一定點(diǎn)B(-1,0)和兩個(gè)動(dòng)點(diǎn),當(dāng)時(shí),點(diǎn)的橫坐標(biāo)的取值范圍是
A.B.
C.D.(-∞,-3]∪

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,則此雙曲線的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線的漸近線與圓相切,則雙曲線的離心率為(  )
A.B.2C.D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知F1、F2分別為橢圓C1的上、下焦點(diǎn),其中F1也是拋物線C2的焦點(diǎn),點(diǎn)A是曲線C1,C2在第二象限的交點(diǎn),且

(Ⅰ)求橢圓1的方程;
(Ⅱ)已知P是橢圓C1上的動(dòng)點(diǎn),MN是圓C:的直徑,求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線的左右焦點(diǎn)分別是,設(shè)是雙曲線右支上一點(diǎn),上投影的大小恰好為,且它們的夾角為,則雙曲線的離心率為(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案