【題目】已知函數(shù),其中實數(shù).
(1)當時,求不等式的解集;
(2)若不等式的解集為,求的值.
【答案】(1)不等式的解集為;(2)
【解析】試題(1)將代入得一絕對值不等式: ,解此不等式即可.
(2)含絕對值的不等式,一般都去掉絕對值符號求解。本題有以下三種考慮:
思路一、根據(jù)的符號去絕對值. 時, ,所以原不等式轉(zhuǎn)化為; 時, ,所以原不等式轉(zhuǎn)化為
思路二、利用去絕對值. ,此不等式化等價于.
思路三、從不等式與方程的關系的角度突破.本題是含等號的不等式,所以可取等號從方程入手.
試題解析:(1)當時, 可化為,由此可得或
故不等式的解集為5分
(2)法一:(從去絕對值的角度考慮)
由,得,此不等式化等價于或
解之得或,
因為,所以不等式組的解集為,由題設可得,故10分
法二:(從等價轉(zhuǎn)化角度考慮)
由,得,此不等式化等價于,
即為不等式組,解得,
因為,所以不等式組的解集為,由題設可得,故10分
法三:(從不等式與方程的關系角度突破)
因為是不等式的解集,所以是方程的根,
把代入得,因為,所以10分
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
在直角坐標系中,曲線:(,為參數(shù)).在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,曲線:.
(1)說明是哪一種曲線,并將的方程化為極坐標方程;
(2)若直線的方程為,設與的交點為,,與的交點為,,若的面積為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高校為增加應屆畢業(yè)生就業(yè)機會,每年根據(jù)應屆畢業(yè)生的綜合素質(zhì)和學業(yè)成績對學生進行綜合評估,已知某年度參與評估的畢業(yè)生共有2000名,其評估成績近似的服從正態(tài)分布.現(xiàn)隨機抽取了100名畢業(yè)生的評估成績作為樣本,并把樣本數(shù)據(jù)進行了分組,繪制了頻率分布直方圖:
(1)求樣本平均數(shù)和樣本方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)若學校規(guī)定評估成績超過分的畢業(yè)生可參加三家公司的面試.
(。┯脴颖酒骄鶖(shù)作為的估計值,用樣本標準差作為的估計值,請利用估計值判斷這2000名畢業(yè)生中,能夠參加三家公司面試的人數(shù);
(ⅱ)若三家公司每家都提供甲、乙、丙三個崗位,崗位工資表如下:
公司 | 甲崗位 | 乙崗位 | 丙崗位 |
9600 | 6400 | 5200 | |
9800 | 7200 | 5400 | |
10000 | 6000 | 5000 |
李華同學取得了三個公司的面試機會,經(jīng)過評估,李華在三個公司甲、乙、丙三個崗位的面試成功的概率均為,李華準備依次從三家公司進行面試選崗,公司規(guī)定:面試成功必須當場選崗,且只有一次機會.李華在某公司選崗時,若以該崗位工資與未進行面試公司的工資期望作為抉擇依據(jù),問李華可以選擇公司的哪些崗位?
并說明理由.
附:,若隨機變量,
則.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為分別為其左、右焦點,為橢圓上一點,且的周長為.
(1)求橢圓的方程;
(2)過點作關于軸對稱的兩條不同的直線,若直線交橢圓于一點,直線交橢圓于一點,證明:直線過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點和橢圓. 直線與橢圓交于不同的兩點.
(Ⅰ) 求橢圓的離心率;
(Ⅱ) 當時,求的面積;
(Ⅲ)設直線與橢圓的另一個交點為,當為中點時,求的值 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項和為.數(shù)列滿足,.
(1)若,且,求正整數(shù)的值;
(2)若數(shù)列,均是等差數(shù)列,求的取值范圍;
(3)若數(shù)列是等比數(shù)列,公比為,且,是否存在正整數(shù),使,,成等差數(shù)列,若存在,求出一個的值,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com