分析 (1)求出拋物線的焦點,設(shè)A(x1,y1),B(x2,y2),D(x3,y3),運用重心坐標公式,可得x1+x2+x3=2e,y1+y2+y3=0,由題意可得一點在x軸上,且與原點重合,另外兩點的連線垂直于x軸,可得m=e,即有k≥-e,先求出x1,x2的范圍,令H(x)=lnx1+lnx2,運用構(gòu)造函數(shù)法,通過判斷函數(shù)的單調(diào)性證出結(jié)論即可得到所求范圍;
(2)不妨令x1<x2,得:0<x1<$\frac{1}{e}$<x2,構(gòu)造F(x)=f($\frac{1}{e}$+x)-f($\frac{1}{e}$-x),x∈[0,$\frac{1}{e}$),求出函數(shù)的導數(shù),得到f(x2)>f($\frac{2}{e}$-x1)?x2>$\frac{2}{e}$-x1,從而得到結(jié)論.
解答 解:(1)拋物線${y}^{2}=\frac{8e}{3}x$的焦點為($\frac{2e}{3}$,0),
設(shè)A(x1,y1),B(x2,y2),D(x3,y3),
由題意可得x1+x2+x3=2e,y1+y2+y3=0,
當三角形ABD面積為最大時,三角形的三條邊與x軸交于兩點,
即有一點在x軸上,且與原點重合,另外兩點的連線垂直于x軸,
可得m=e,即有k≥-e,
f(x)的定義域是(0,+∞),f′(x)=lnx+1,
令f′(x)>0,解得:x>$\frac{1}{e}$,令f′(x)<0,解得:0<x<$\frac{1}{e}$
∴f(x)在(0,$\frac{1}{e}$)遞減,在($\frac{1}{e}$,+∞)遞增,
∴f(x)min=f($\frac{1}{e}$)=-$\frac{1}{e}$,f(1)=0,
畫出函數(shù)f(x)的圖象,如圖示
可得-$\frac{1}{e}$<k<0,
x1lnx1=x2lnx2,設(shè)x1<x2,
則0<x1<$\frac{1}{e}$,x2>$\frac{1}{e}$,
令H(x)=lnx1+lnx2=lnx1+$\frac{{x}_{1}}{{x}_{2}}$lnx1=(1+$\frac{{x}_{1}}{{x}_{2}}$)lnx1,
∵x2>$\frac{1}{e}$,∴$\frac{{x}_{1}}{{x}_{2}}$<ex1,
∴H(x)<(1+ex1)lnx1,
令g(x)=(1+ex)lnx,(0<x<$\frac{1}{e}$),
則g′(x)=elnx+e+$\frac{1}{x}$,g″(x)=$\frac{ex-1}{{x}^{2}}$,
∵x<$\frac{1}{e}$,∴ex-1<0,
∴g″(x)<0,g′(x)是減函數(shù),
又g′($\frac{1}{e}$)=e,∴g′(x)>g′($\frac{1}{e}$),g′(x)>0,
∴g(x)是增函數(shù),又g($\frac{1}{e}$)=-2,
∴g(x)<g($\frac{1}{e}$)=-2,
∴H(x)<-2,
∴0<x1x2<$\frac{1}{{e}^{2}}$;
(2)由(1),不妨令x1<x2,得:0<x1<$\frac{1}{e}$<x2,
構(gòu)造F(x)=f($\frac{1}{e}$+x)-f($\frac{1}{e}$-x),x∈[0,$\frac{1}{e}$),
F′(x)=ln($\frac{1}{e}$+x)+ln($\frac{1}{e}$-x)+2,
F″(x)=$\frac{2x}{{x}^{2}-\frac{1}{{e}^{2}}}$≤0恒成立,
F′(x)在x∈[0,$\frac{1}{e}$)上單調(diào)遞減,
F′(x)≤F′(0)=0,F(xiàn)(x)在x∈[0,$\frac{1}{e}$)上單調(diào)遞減,
F(x)≤F(0)=0,當且僅當x=0取“=”,
即對于x∈(0,$\frac{1}{e}$),f($\frac{1}{e}$+x)<f($\frac{1}{e}$-x)恒成立,
又0<x1<$\frac{1}{e}$,0<$\frac{1}{e}$-x1<$\frac{1}{e}$,
∴f(x2)=f(x1)=f[$\frac{1}{e}$-($\frac{1}{e}$-x1)]>f[$\frac{1}{e}$+($\frac{1}{e}$-x1)]
=f($\frac{2}{e}$-x1),
此時:$\frac{1}{e}$<x2,$\frac{1}{e}$<$\frac{2}{e}$-x1<$\frac{2}{e}$,
由f(x)的遞增區(qū)間為($\frac{1}{e}$,+∞)知:
f(x2)>f($\frac{2}{e}$-x1)?x2>$\frac{2}{e}$-x1,
即x1+x2>$\frac{2}{e}$.
即有x1+x2的取值范圍是($\frac{2}{e}$,1+$\frac{1}{e}$).
點評 本題考查拋物線的方程和性質(zhì),主要考查導數(shù)的運用:求單調(diào)區(qū)間、極值和最值,注意運用函數(shù)的單調(diào)性,考查不等式的性質(zhì),以及轉(zhuǎn)化思想,是難題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2\sqrt{10}}{5}$ | B. | $\frac{\sqrt{10}}{2}$ | C. | $\sqrt{10}$ | D. | $\frac{7\sqrt{10}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 大量的試驗中,出現(xiàn)正面的頻率穩(wěn)定于$\frac{1}{2}$ | |
B. | 不管試驗多少次,出現(xiàn)正面的概率始終為$\frac{1}{2}$ | |
C. | 試驗次數(shù)增多,出現(xiàn)正面的經(jīng)驗概率越接近$\frac{1}{2}$ | |
D. | 試驗次數(shù)無限增大時,出現(xiàn)正面的頻率的極限為$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com