12.在擲均勻硬幣的試驗(yàn)中,以下對“大數(shù)定理”的理解錯(cuò)誤的是( 。
A.大量的試驗(yàn)中,出現(xiàn)正面的頻率穩(wěn)定于$\frac{1}{2}$
B.不管試驗(yàn)多少次,出現(xiàn)正面的概率始終為$\frac{1}{2}$
C.試驗(yàn)次數(shù)增多,出現(xiàn)正面的經(jīng)驗(yàn)概率越接近$\frac{1}{2}$
D.試驗(yàn)次數(shù)無限增大時(shí),出現(xiàn)正面的頻率的極限為$\frac{1}{2}$

分析 大數(shù)定律(law of large numbers),是一種描述當(dāng)試驗(yàn)次數(shù)很大時(shí)所呈現(xiàn)的概率性質(zhì)的定律.但是注意到,大數(shù)定律并不是經(jīng)驗(yàn)規(guī)律,而是在一些附加條件上經(jīng)嚴(yán)格證明了的定理,它是一種自然規(guī)律因而通常不叫定理而是大數(shù)“定律”,

解答 解:在重復(fù)投擲一枚硬幣的隨機(jī)試驗(yàn)中,觀測投擲了n次硬幣中出現(xiàn)正面的次數(shù),不同的n次試驗(yàn),出現(xiàn)正面的頻率(出現(xiàn)正面次數(shù)與n之比)可能不同,但當(dāng)試驗(yàn)的次數(shù)n越來越大時(shí),出現(xiàn)正面的頻率將大體上逐漸接近于$\frac{1}{2}$,
故選:B.

點(diǎn)評 本題考查了“大數(shù)定理”的概念,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,$\frac{{S}_{n}}{n}$)在直線y=$\frac{1}{2}$x+$\frac{11}{2}$上.?dāng)?shù)列{bn}滿足bn+2-2bn+1+bn=0(n∈N*),且b3=11,前9項(xiàng)和為153.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn=$\frac{3}{(2{a}_{n}-11)(2_{n}-1)}$,數(shù)列{cn}的前n項(xiàng)和為Tn,求Tn及使不等式Tn<$\frac{k}{2014}$對一切n都成立的最小正整數(shù)k的值;
(3)設(shè)f(n)=$\left\{\begin{array}{l}{{a}_{n}(n=2l-1,l∈{N}^{*})}\\{_{n}(n=2l,n∈{N}^{*})}\end{array}\right.$問是否存在m∈N*,使得f(m+15)=5f(m)成立?若存在,求出m的值; 若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知有一條拋物線${y}^{2}=\frac{8e}{3}x$,且在其上存在三點(diǎn)A,B,D,且三角形ABD的重心恰好為拋物線的焦點(diǎn),則當(dāng)三角形ABD面積為最大時(shí),三角形的三條邊與x軸交于兩點(diǎn),記橫坐標(biāo)較大的點(diǎn)的橫坐標(biāo)為m,且記函數(shù)f(x)=xlnx;g(x)=k[k∈[-m,+∞)].
(1)若f(x)=g(x)這組方程存在兩根x1,x2,試求x1x2的取值范圍.
(2)在(1)的條件下試求x1+x2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖所示,已知在五棱錐P-ABCDE底面ABCDE為凸五邊形,AE=DC=2,AB=BC=3,DE=1,∠EAB=∠BCD=∠CDE=∠DEA=120°,F(xiàn)為AE上的點(diǎn),且AF=$\frac{3}{2}$,平面PAE與底面ABCDE垂直.
求證:(1)BC∥平面PAE;(2)PA⊥FC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.用平面區(qū)域表示下列不等式組.
(1)$\left\{\begin{array}{l}{x≥y}\\{3x+4y-12<0}\end{array}\right.$
(2)$\left\{\begin{array}{l}{x-y+5≥0}\\{x+y+1>0}\\{x≤3}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)f(x)=$\frac{1}{{4}^{x}+1}$圖象的對稱中心為(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列等式恒成立的是(  )
A.$\overrightarrow{AB}$+$\overrightarrow{BA}$=0B.$\overrightarrow{AB}$-$\overrightarrow{AC}$=$\overrightarrow{BC}$C.($\overrightarrow{a}•\overrightarrow$)$•\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow•\overrightarrow{c}$)D.($\overrightarrow{a}$+$\overrightarrow$)$•\overrightarrow{c}$=$\overrightarrow{a}•\overrightarrow{c}$+$\overrightarrow•\overrightarrow{c}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某種“籠具”由內(nèi),外兩層組成,無下底面,內(nèi)層和外層分別是一個(gè)圓錐和圓柱,其中圓柱與圓錐的底面周長相等,圓柱有上底面,制作時(shí)需要將圓錐的頂端剪去,剪去部分和接頭忽略不計(jì),已知圓柱的底面周長為24πcm,高為30cm,圓錐的母線長為20cm.
(1)求這種“籠具”的體積(結(jié)果精確到0.1cm3);
(2)現(xiàn)要使用一種紗網(wǎng)材料制作50個(gè)“籠具”,該材料的造價(jià)為每平方米8元,共需多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某中學(xué)從高三甲、乙兩個(gè)班中各選出7名學(xué)生參加數(shù)學(xué)競賽,他們?nèi)〉玫某煽內(nèi)缦拢?br />甲班:92,80,79,78,85,96,85
乙班:81,91,91,76,81,92,83
(Ⅰ)若競賽成績在90分以上的視為“優(yōu)秀生”,則從“優(yōu)秀生”中任意選出2名,乙班恰好只有1名的概率是多少?
(Ⅱ)根據(jù)兩組數(shù)據(jù)完成兩班數(shù)學(xué)競賽成績的莖葉圖,指出甲班學(xué)生成績的眾數(shù),乙班學(xué)生成績中位數(shù),并請你利用所學(xué)的平均數(shù)、方差的知識分析一下兩個(gè)班學(xué)生的競賽成績情況.

查看答案和解析>>

同步練習(xí)冊答案