已知橢圓經(jīng)過點,.
(Ⅰ)求橢圓的方程;(Ⅱ)設為橢圓上的動點,求的最大值.

(Ⅰ);(Ⅱ)4

解析試題分析:(Ⅰ)設橢圓方程為,把點的坐標代入,得關于的方程組,解方程組求;](Ⅱ)由(Ⅰ)得橢圓的方程為,因點為橢圓上的動點,有,將表示出來代入,可以看成關于的二次函數(shù),轉化為求二次函數(shù)的最大值求解.
試題解析:(Ⅰ)設橢圓方程為,把點的坐標代入得解得:,所以橢圓的方程為;
(Ⅱ)因為P為橢圓上的動點,則,所以,
,∴當時,取最大值4.
考點:1、橢圓的標準方程;2、二次函數(shù)的最值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

在直角坐標系中,已知中心在原點,離心率為的橢圓E的一個焦點為圓的圓心.
⑴求橢圓E的方程;
⑵設P是橢圓E上一點,過P作兩條斜率之積為的直線,當直線都與圓相切時,求P點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

知橢圓的離心率為,橢圓短軸的一個端點與兩個焦點構成的三角形的面積為,直線l的方程為: 
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線l與橢圓相交于、兩點
①若線段中點的橫坐標為,求斜率的值;
②已知點,求證:為定值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線的焦點坐標為,過的直線交拋物線兩點,直線分別與直線相交于兩點.

(1)求拋物線的方程;
(2)證明△ABO與△MNO的面積之比為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線的頂點在坐標原點,焦點在軸上,且過點.

(Ⅰ)求拋物線的標準方程;
(Ⅱ)與圓相切的直線交拋物線于不同的兩點若拋物線上一點滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的中心為原點,長軸長為,一條準線的方程為.
(Ⅰ)求該橢圓的標準方程;
(Ⅱ)射線與橢圓的交點為,過作傾斜角互補的兩條直線,分別與橢圓交于 兩點(兩點異于).求證:直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線與雙曲線有公共焦點,點是曲線在第一象限的交點,且
(Ⅰ)求雙曲線的方程;
(Ⅱ)以雙曲線的另一焦點為圓心的圓與直線相切,圓.過點作互相垂直且分別與圓、圓相交的直線,設被圓截得的弦長為,被圓截得的弦長為,問:是否為定值?如果是,請求出這個定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的離心率為,橢圓的短軸端點與雙曲線的焦點重合,過點且不垂直于軸直線與橢圓相交于、兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設橢圓的左焦點為,離心率為,過點且與軸垂直的直線被橢圓截得的線段長為.
(1) 求橢圓方程.
(2) 過點的直線與橢圓交于不同的兩點,當面積最大時,求.

查看答案和解析>>

同步練習冊答案