2011年六月康菲公司由于機器故障,引起嚴重的石油泄漏,造成了海洋的巨大污染,某沿海漁場也受到污染.為降低污染,漁場迅速切斷與海水聯(lián)系,并決定在漁場中投放一種可與石油發(fā)生化學反應的藥劑.已知每投放a(1≤a≤4,且a∈R)個單位的藥劑,它在水中釋放的濃度y(克/升)隨著時間x(天)變化的函數(shù)關系式近似于y=af(x),其中f(x)=
16
8-x
-1(0≤x≤4)
5-
1
2
x(4<x≤10)
,若多次投放,則某一時刻水中的藥劑濃度為每次投放的藥劑在相應時刻所釋放的濃度之和.根據(jù)實驗,當水中藥劑的濃度不低于4(克/升)時,它才能起到有效治污的作用.稱為有效凈化;當藥劑在水中釋放的濃度不低于6(毫克/升)且不高于18(毫克/升)時稱為最佳凈化.
(Ⅰ)若一次投放4個單位的藥劑,則有效治污時間可達幾天?
(Ⅱ)若第一次投放2個單位的藥劑,6天后再投放a個單位的藥劑,要使接下來的4天中能夠持續(xù)有效治污,試問a的最小值(精確到0.1,參考數(shù)據(jù):
2
取1.4).
考點:函數(shù)最值的應用
專題:應用題,函數(shù)的性質及應用
分析:(Ⅰ)由a=4,得y=a•f(x),即y=
64
8-x
-4(0≤x≤4)
20-2x(4<x≤10)
;令y≥4,解得x的取值范圍.
(Ⅱ)要使接下來的4天中能夠持續(xù)有效治污,即當6≤x≤10時,y=2×(5-
1
2
x)+a[
16
8-(x-6)
-1]=(14-x)+
16a
14-x
-a-4≥4恒成立,求y的最小值,令其≥4,解出a的最小值.
解答: 解:(Ⅰ)因為a=4,所以y=
64
8-x
-4(0≤x≤4)
20-2x(4<x≤10)
;
則當0≤x≤4時,由
64
8-x
-4≥4
,解得x≥0,所以此時0≤x≤4,
當4<x≤10時,由20-2x≥4,解得x≤8,所以此時4<x≤8;
綜合,得0≤x≤8,若一次投放4個單位的制劑,則有效治污時間可達8天.
(Ⅱ)當6≤x≤10時,y=2×(5-
1
2
x)+a[
16
8-(x-6)
-1]=(14-x)+
16a
14-x
-a-4,
因為,14-x∈[4,8],而1≤a≤4,
所以,4
a
∈[4,8],由基本不等式得,當且僅當14-x=4
a
時,y有最小值為8
a
-a-4;
令8
a
-a-4≥4,解得24-16
2
≤a≤4,所以a的最小值為1.6.
點評:本題考查利用數(shù)學知識解決實際問題,考查分段函數(shù)的運用,考查基本不等式的運用,確定函數(shù)解析式是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

為調查某地區(qū)老年人是否需要志愿者提供幫助,用簡單隨機抽樣方法從該地區(qū)調查了500位老年人,結果如表:
                性別
是否需要志愿者
需要4030
不需要160270
(1)估計該地區(qū)老年人中,需要志愿者提供幫助的比例;
(2)能否有99%的把握認為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關?
(3)根據(jù)(2)的結論,能否提出更好的調查方法來估計該地區(qū)的老年人中需要志愿者提供幫助的老年人比例?說明理由.
P(K2≥k)0.0500.0100.001
3.8416.63510.828
附:K2=
n(ad-bc)
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax3+x2-ax,a∈R,x∈R.
(1)若函數(shù)f(x)在區(qū)間(1,2)上不是單調函數(shù),試求a的取值范圍;
(2)直接寫出(不需要給出演算步驟)函數(shù)g(x)=
f(x)
x
-lnx(x>
1
2
)的單調遞增區(qū)間;
(3)如果存在a∈(-∞,-1],使函數(shù)h(x)=f(x)+f′(x),x∈[-1,b],(b>-1)在x=-1處取得最小值,試求b的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sinωx(ω>0)的圖象的一個對稱中心為點(
4
,0),且在區(qū)間(0,
π
4
)上是增函數(shù),則ω的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,過右焦點F且斜率為k(k>0)的直線與C相交于A、B兩點.若
AF
=2
FB
,則k=( 。
A、1
B、
5
2
C、
3
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:lg2×lg
5
2
-lg0.2×lg40=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在極坐標系中,已知圓C的圓心是C(1,
π
4
),半徑為1,則圓C的極坐標方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有以下四種變換方式:
①向左平移
π
4
個單位長度,再把所得各點的橫坐標縮短到原來的
1
2
倍(縱坐標不變);
②向左平移
π
8
個單位長度,再把所得各點的橫坐標縮短到原來的
1
2
倍(縱坐標不變);
③把各點的橫坐標縮短到原來的
1
2
倍(縱坐標不變),再向左平移
π
4
個單位長度;
④把各點的橫坐標縮短到原來的
1
2
倍(縱坐標不變),再向左平移
π
8
個單位長度;
其中能將函數(shù)y=sinx的圖象變?yōu)楹瘮?shù)y=sin(2x+
π
4
)的圖象的是( 。
A、①和④B、①和③
C、②和④D、②和③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-2ax+b的一個零點為1,則滿足f(a)=0的實數(shù)a的值為
 

查看答案和解析>>

同步練習冊答案