分析 (1)利用倍角公式降冪,再由兩角和與差的正弦化積,由周期公式求得周期,再由復(fù)合函數(shù)的單調(diào)性求得函數(shù)f(x)的單調(diào)減區(qū)間;
(2)由x得范圍求出相位的范圍,則函數(shù)f(x)在[-$\frac{π}{4}$,0]上的最大值和最小值可求.
解答 解:(1)$f(x)=\frac{{\sqrt{3}}}{2}sin2xcos2x+\frac{1}{2}{sin^2}2x-\frac{1}{4}=\frac{{\sqrt{3}}}{4}sin4x+\frac{1}{4}(1-cos4x)-\frac{1}{4}$
=$\frac{{\sqrt{3}}}{4}sin4x-\frac{1}{4}cos4x=\frac{1}{2}sin(4x-\frac{π}{6})$,
最小正周期T=$\frac{2π}{4}=\frac{π}{2}$.
由$\frac{π}{2}+2kπ≤4x-\frac{π}{6}≤\frac{3π}{2}+2kπ$,得$\frac{π}{6}+\frac{kπ}{2}≤x≤\frac{5π}{12}+\frac{kπ}{2},k∈Z$,
∴函數(shù)f(x)的單調(diào)減區(qū)間為[$\frac{π}{6}+\frac{kπ}{2},\frac{5π}{12}+\frac{kπ}{2}$],k∈Z;
(2)由x∈[-$\frac{π}{4}$,0],得4x$-\frac{π}{6}$∈[$-\frac{7π}{6},-\frac{π}{6}$],
∴$sin(4x-\frac{π}{6})∈[{-1,\frac{1}{2}}]$,
則f(x)在[-$\frac{π}{4}$,0]上的最大值為$\frac{1}{4}$,最小值為$-\frac{1}{2}$.
點評 本題考查兩角和與差的三角函數(shù),考查了y=Asin(ωx+φ)型函數(shù)的圖象和性質(zhì),考查三角函數(shù)最值的求法,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{8}{15}$ | B. | $\frac{1}{5}$ | C. | $\frac{12}{19}$ | D. | $\frac{3}{95}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 14 | B. | 15 | C. | 16 | D. | 17 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{FD}$ | B. | $\overrightarrow{FC}$ | C. | $\overrightarrow{FE}$ | D. | $\overrightarrow{BE}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com