【題目】已知雙曲線的兩個焦點為、P為該雙曲線上一點,滿足,P到坐標(biāo)原點O的距離為d,且,則________.

【答案】49

【解析】

求得雙曲線的bc,設(shè)P為右支上一點,|PF1|m,|PF2|n,運用雙曲線的定義,結(jié)合條件,由兩點的距離公式,解不等式可得a的正整數(shù)解.

雙曲線1b2,c2a2+4

設(shè)P為右支上一點,|PF1|m,|PF2|n,

由雙曲線的定義可得mn2a,

由題意可得4c2mn,

又由三角形中線與邊的關(guān)系可得:2 m2+2n2(2c)2+(2d)2

m2+n22c2+2d2

可得(mn2+2mn4a2+8c22c2+2d2

d2∈(25,81),

255a2+1281

a為正整數(shù),可得a249,

故答案為:49

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐PABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC60°,E,F分別是BC,PC的中點.

(I)證明:AEPD

(II)設(shè)ABPA2

①求異面直線PBAD所成角的正弦值;

②求二面角EAFC的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)曲線是焦點在軸上的橢圓,兩個焦點分別是是,,且是曲線上的任意一點,且點到兩個焦點距離之和為4.

1)求的標(biāo)準(zhǔn)方程;

2)設(shè)的左頂點為,若直線與曲線交于兩點,不是左右頂點),且滿足,求證:直線恒過定點,并求出該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解運動健身減肥的效果,某健身房調(diào)查了20名肥胖者,健身之前他們的體重情況如三維餅圖(1)所示,經(jīng)過四個月的健身后,他們的體重情況,如三維餅圖(2)所示.對比健身前后,關(guān)于這20名肥胖者,下面結(jié)論不正確的是(

A.他們健身后,體重在區(qū)間內(nèi)的人增加了2

B.他們健身后,體重在區(qū)間內(nèi)的人數(shù)沒有改變

C.他們健身后,20人的平均體重大約減少了8 kg

D.他們健身后,原來體重在區(qū)間內(nèi)的肥胖者體重都有減少

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)列滿足:對于任意的正整數(shù),,,且,則稱該數(shù)列為“跳級數(shù)列”.

1)若數(shù)列為“跳級數(shù)列”,且,求的值;

2)若數(shù)列為“跳級數(shù)列”,則對于任意一個大于的質(zhì)數(shù),在數(shù)列中總有一項是的倍數(shù);

3)若為奇質(zhì)數(shù),則存在一個“跳級數(shù)列”,使得數(shù)列中每一項都不是的倍數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C: ,點.

1)求點P與拋物線C的焦點F的距離;

2)設(shè)斜率為l的直線l與拋物線C交于AB兩點若△PAB的面積為,求直線l的方程;

3)是否存在定圓M: ,使得過曲線C上任意一點Q作圓M的兩條切線,與曲線C交于另外兩點AB時,總有直線AB也與圓M相切?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年初,某市為了實現(xiàn)教育資源公平,辦人民滿意的教育,準(zhǔn)備在今年8月份的小升初錄取中在某重點中學(xué)實行分?jǐn)?shù)和搖號相結(jié)合的錄取辦法.該市教育管理部門為了了解市民對該招生辦法的贊同情況,隨機采訪了440名市民,將他們的意見和是否近三年家里有小升初學(xué)生的情況進行了統(tǒng)計,得到如下的2×2列聯(lián)表.

贊同錄取辦法人數(shù)

不贊同錄取辦法人數(shù)

合計

近三年家里沒有小升初學(xué)生

180

40

220

近三年家里有小升初學(xué)生

140

80

220

合計

320

120

440

1)根據(jù)上面的列聯(lián)表判斷,能否在犯錯誤的概率不超過0.001的前提下認(rèn)為是否贊同小升初錄取辦法與近三年是否家里有小升初學(xué)生有關(guān);

2)從上述調(diào)查的不贊同小升初錄取辦法人員中根據(jù)近三年家里是否有小升初學(xué)生按分層抽樣抽出6人,再從這6人中隨機抽出3人進行電話回訪,求3人中恰有1人近三年家里沒有小升初學(xué)生的概率.

附:,其中.

P()

0.10

0.05

0.025

0.10

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角坐標(biāo)系中,圓的方程為,,為圓上三個定點,某同學(xué)從點開始,用擲骰子的方法移動棋子.規(guī)定:①每擲一次骰子,把一枚棋子從一個定點沿圓弧移動到相鄰下一個定點;②棋子移動的方向由擲骰子決定,若擲出骰子的點數(shù)為偶數(shù),則按圖中箭頭方向移動;若擲出骰子的點數(shù)為奇數(shù),則按圖中箭頭相反的方向移動.設(shè)擲骰子次時,棋子移動到,處的概率分別為,.例如:擲骰子一次時,棋子移動到,,處的概率分別為,,

1)分別擲骰子二次,三次時,求棋子分別移動到,,處的概率;

2)擲骰子次時,若以軸非負(fù)半軸為始邊,以射線,,為終邊的角的余弦值記為隨機變量,求的分布列和數(shù)學(xué)期望;

3)記,,,其中.證明:數(shù)列是等比數(shù)列,并求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【選修4-4,坐標(biāo)系與參數(shù)方程】

在直角坐標(biāo)系中,直線的參數(shù)方程為t為參數(shù)),在以O為極點,軸正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為

)求直線的普通方程與曲線C的直角坐標(biāo)方程;

)若直線軸的交點為P,直線與曲線C的交點為A,B,的值.

查看答案和解析>>

同步練習(xí)冊答案