【題目】如圖,在三棱柱中,,D,E分別是的中點(diǎn).

(1)求證:DE∥平面

(2)若,求證:平面平面.

【答案】(1)見(jiàn)證明;(2)見(jiàn)證明

【解析】

1)連結(jié)AB1B1C,推導(dǎo)出四邊形ABB1A1是平行四邊形,DEB1C,由此能證明DE∥平面BCC1B1

2)推導(dǎo)出DEB1C,從而ABB1C,推導(dǎo)出平行四邊形BCC1B1是菱形,從而BC1B1C,再由ABB1C,得BC1⊥平面ABC1,由此能證明平面ABC1⊥平面BCC1B1

(1)連結(jié).

在三棱柱中,,且,

所以四邊形是平行四邊形,

因?yàn)镋是的中點(diǎn),

所以E也是中點(diǎn),

又因?yàn)镈是AC的中點(diǎn),

所以

平面平面,

所以DE∥平面.

(2) 由(1)知,因?yàn)?/span>,所以,

在三棱柱中,,四邊形是平行四邊形,

因?yàn)?/span>,所以,

所以平行四邊形是菱形,

所以

又因?yàn)?/span>,平面

所以平面,

又因?yàn)?/span>平面

所以平面平面.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以棱長(zhǎng)為1的正方體的具有公共頂點(diǎn)的三條棱所在直線為坐標(biāo)軸,建立空間直角坐標(biāo)系Oxyz,點(diǎn)P在對(duì)角線AB上運(yùn)動(dòng),點(diǎn)Q在棱CD上運(yùn)動(dòng).

(1)當(dāng)P是AB的中點(diǎn),且2|CQ|=|QD|時(shí),求|PQ|的值;

(2)當(dāng)Q是棱CD的中點(diǎn)時(shí),試求|PQ|的最小值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的方程為:

當(dāng)極點(diǎn)到直線的距離為時(shí),求直線的直角坐標(biāo)方程;

若直線與曲線有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)在點(diǎn)處取得極值.

(1)求的值;

(2)若有極大值,求上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的首項(xiàng),其前n項(xiàng)和為,對(duì)于任意正整數(shù),都有.

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè)數(shù)列滿(mǎn)足.

①若,求證:數(shù)列是等差數(shù)列;

②若數(shù)列都是等比數(shù)列,求證:數(shù)列中至多存在三項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市舉行中學(xué)生詩(shī)詞大賽,分初賽和復(fù)賽兩個(gè)階段進(jìn)行,規(guī)定:初賽成績(jī)大于90分的具有復(fù)賽資格,某校有800名學(xué)生參加了初賽,所有學(xué)生的成績(jī)均在區(qū)間內(nèi),其頻率分布直方圖如圖.

Ⅰ)求獲得復(fù)賽資格的人數(shù);

Ⅱ)從初賽得分在區(qū)間的參賽者中,利用分層抽樣的方法隨機(jī)抽取人參加學(xué)校座談交流,那么從得分在區(qū)間各抽取多少人?

Ⅲ)從(Ⅱ)抽取的人中,選出人參加全市座談交流,設(shè)表示得分在區(qū)間中參加全市座談交流的人數(shù),求的分布列及數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓過(guò)點(diǎn),離心率為,左右焦點(diǎn)分別為,過(guò)點(diǎn)的直線交橢圓于兩點(diǎn)。

(1)求橢圓的方程;

(2)當(dāng)的面積為時(shí),求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某媒體對(duì)男女延遲退休這一公眾關(guān)注的問(wèn)題進(jìn)行了民意調(diào)查,下表是在某單位調(diào)查后得到的數(shù)據(jù)(人數(shù))

贊同

反對(duì)

合計(jì)

5

6

11

11

3

14

合計(jì)

16

9

25

1)能否有90%以上的把握認(rèn)為對(duì)這一問(wèn)題的看法與性別有關(guān)?

2)進(jìn)一步調(diào)查:

①?gòu)馁澩?/span>男女延遲退休人中選出人進(jìn)行陳述發(fā)言,求事件男士和女士各至少有人發(fā)言的概率;

②從反對(duì)男女延遲退休人中選出人進(jìn)行座談,設(shè)選出的人中女士人數(shù)為,求的分布列和數(shù)學(xué)期望.

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案