【題目】假設(shè)要考察某公司生產(chǎn)的500克袋裝牛奶的質(zhì)量是否達(dá)標(biāo),現(xiàn)從800袋牛奶中抽取60袋牛奶進(jìn)行檢驗(yàn),利用隨機(jī)數(shù)表抽樣時,先將800袋牛奶按000,001,…,799進(jìn)行編號,如果從隨機(jī)數(shù)表第8行第7列開始向右讀,請你寫出抽取檢測的第5袋牛奶的編號_________.(下面摘取了隨機(jī)數(shù)表第7行至第9行)
8442 1753 3157 2455 0688 7704 7447 6721 7633 5025 8392 1206 76
6301 6378 5916 9556 6719 9810 5071 7512 8673 5807 4439 5238 79
3321 1234 2978 6456 0782 5242 0744 3815 5100 1342 9966 0279 54
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題“若a>b,則a+c>b+c”的逆命題是( 。
A. 若a>b,則a+c≤b+c
B. 若a+c≤b+c,則a≤b
C. 若a+c>b+c,則a>b
D. 若a≤b,則a+c≤b+c
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3-ax-1,若f(x)在(-1,1)上單調(diào)遞減,則a的取值范圍為( )
A. a≥3 B. a>3
C. a≤3 D. a<3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】總體由編號為01,02,…,19,20的20個個體組成,利用下面的隨機(jī)數(shù)表選取5個個體,選取方法是從隨機(jī)數(shù)表第1行的第5列和第6列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為( )
7816 6572 0802 6314 0702 4369 9728 0198
3204 9234 4935 8200 3623 4869 6938 7481
A. 08 B. 07 C. 02 D. 01
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若f(x)是定義在R上的奇函數(shù),當(dāng)x<0時,f(x)=x(1-x),求當(dāng)x≥0時,函數(shù)f(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 相關(guān)關(guān)系是一種不確定的關(guān)系,回歸分析是對相關(guān)關(guān)系的分析,因此沒有實(shí)際意義
B. 獨(dú)立性檢驗(yàn)對分類變量關(guān)系的研究沒有100%的把握,所以獨(dú)立性檢驗(yàn)研究的結(jié)果在實(shí)際中也沒有多大的實(shí)際意義
C. 相關(guān)關(guān)系可以對變量的發(fā)展趨勢進(jìn)行預(yù)報,這種預(yù)報可能是錯誤的
D. 獨(dú)立性檢驗(yàn)如果得出的結(jié)論有99%的可信度就意味著這個結(jié)論一定是正確的
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x2﹣4x﹣5≤0},函數(shù)y=ln(x2﹣4)的定義域?yàn)锽.
(Ⅰ)求A∩B;
(Ⅱ)若C={x|x≤a﹣1},且A∪(RB)C,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2ax+2,x∈[﹣5,5],
(1)當(dāng)a=﹣1時,求函數(shù)的最大值和最小值;
(2)求實(shí)數(shù)a的取值范圍,使y=f(x)在區(qū)間[﹣5,5]上是單調(diào)減函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若點(diǎn)P(m,2)不在不等式x+4y-1>0表示的平面區(qū)域內(nèi),則m滿足的條件是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com