【題目】已知函數(shù)f(x)=x2+2ax+2,x∈[﹣5,5],
(1)當a=﹣1時,求函數(shù)的最大值和最小值;
(2)求實數(shù)a的取值范圍,使y=f(x)在區(qū)間[﹣5,5]上是單調(diào)減函數(shù).
【答案】(1)[f(x)]max=37,[f(x)] min=1(2)a≤﹣5
【解析】試題分析:(Ⅰ)a=﹣1時,配方得到f(x)=(x﹣1)2+1,從而可以看出x=1時f(x)取最小值,而x=﹣5時取最大值,這樣便可得出f(x)的最大值和最小值;
(Ⅱ)可以求出f(x)的對稱軸為x=﹣a,而f(x)在[﹣5,5]上是單調(diào)函數(shù),從而可以得出﹣a≤﹣5,或﹣a≥5,這樣便可得出實數(shù)a的取值范圍.
解:(Ⅰ)a=﹣1,f(x)=x2﹣2x+2=(x﹣1)2+1;
∵x∈[﹣5,5];
∴x=1時,f(x)取最小值1;
x=﹣5時,f(x)取最大值37;
(Ⅱ)f(x)的對稱軸為x=﹣a;
∵f(x)在[﹣5,5]上是單調(diào)函數(shù);
∴﹣a≤﹣5,或﹣a≥5;
∴實數(shù)a的取值范圍為(﹣∞,﹣5]∪[5,+∞).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三人參加某公司的面試,最終只有一人能夠被該公司錄用,得到面試結(jié)果以后甲說:丙被錄用了;乙說:甲被錄用了;丙說:我沒被錄用.若這三人中僅有一人說法錯誤,則下列結(jié)論正確的是( )
A. 丙被錄用了 B. 乙被錄用了 C. 甲被錄用了 D. 無法確定誰被錄用了
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)要考察某公司生產(chǎn)的500克袋裝牛奶的質(zhì)量是否達標,現(xiàn)從800袋牛奶中抽取60袋牛奶進行檢驗,利用隨機數(shù)表抽樣時,先將800袋牛奶按000,001,…,799進行編號,如果從隨機數(shù)表第8行第7列開始向右讀,請你寫出抽取檢測的第5袋牛奶的編號_________.(下面摘取了隨機數(shù)表第7行至第9行)
8442 1753 3157 2455 0688 7704 7447 6721 7633 5025 8392 1206 76
6301 6378 5916 9556 6719 9810 5071 7512 8673 5807 4439 5238 79
3321 1234 2978 6456 0782 5242 0744 3815 5100 1342 9966 0279 54
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)α,β是兩個不同的平面,l,m是兩條不同的直線,且lα,mβ下面命題正確的是( 。
A. 若l∥β,則α∥β B. 若α⊥β,則l⊥m C. 若l⊥β,則α⊥β D. 若α∥β,則l∥m
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x),g(x)在[a,b]上可導(dǎo),且f′(x)>g′(x),則當a<x<b時,有( )
A.f(x)>g(x)
B.f(x)<g(x)
C.f(x)+g(a)>g(x)+f(a)
D.f(x)+g(b)>g(x)+f(b)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個命題中錯誤的個數(shù)是( )
①垂直于同一條直線的兩條直線相互平行;
②垂直于同一個平面的兩條直線相互平行;
③垂直于同一條直線的兩個平面相互平行;
④垂直于同一個平面的兩個平面相互平行.
A.1 B.2 C.3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由①正方形的對角線相等;②平行四邊形的對角線相等;③正方形是平行四邊形,根據(jù) “三段論”推理出一個結(jié)論,則這個結(jié)論是_______(填①、②、③)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合M={x|x2+2x-8=0},N={x|(x-2)(x-a)=0},若NM,則實數(shù)a的值是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com