精英家教網 > 高中數學 > 題目詳情
11.已知a>1,b>2,且$\frac{1}{a-1}+\frac{1}{b-2}$=3,則a+4b的最小值為( 。
A.8B.9C.10D.12

分析 換元,利用“1”的代換,根據基本不等式,即可求出a+4b的最小值.

解答 解:設$\frac{1}{a-1}$=m,$\frac{1}{b-2}$=n(m>0,n>0),則a=1+$\frac{1}{m}$,b=2+$\frac{1}{n}$,m+n=3,
∴a+4b=9+$\frac{1}{m}$+$\frac{4}{n}$=9+$\frac{1}{3}$($\frac{1}{m}$+$\frac{4}{n}$)(m+n)≥9+$\frac{1}{3}$(5+$\frac{n}{m}$+$\frac{4m}{n}$)≥9+$\frac{1}{3}$(5+4)=12,
當且僅當$\frac{n}{m}$=$\frac{4m}{n}$,即n=2m時取等號,
∴a+4b的最小值為12.
故選:D.

點評 本題考查基本不等式的運用,考查“1”的代換,考查學生的計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

1.正三棱柱的左視圖如圖所示,則該正三棱柱的體積為(  )
A.$\sqrt{3}$B.2C.2$\sqrt{3}$D.4

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.某制造商3月生產了一批乒乓球,隨機抽取100個進行檢查,測得每個球的直徑(單位:mm),將數據進行分組,得到如下頻率分布表:
分組頻數頻率
[39.95,39.97)100.10
[39.97,39.99)x0.20
[39.99,40.01)500.50
[40.01,40.03]20y
   合計1001
(1)求出頻率分布表中的x,y,并在圖中補全頻率分布直方圖;
(2)若以上述頻率作為概率,已知標準乒乓球的直徑為40.00mm,試求這批乒乓球的直徑誤差不超過0.03mm的概率;
(3)統(tǒng)計方法中,同一組數據常用該組區(qū)間的中點值(例如區(qū)間[39.99,40.01)的中點值是40.00)作為代表.據此估計這批乒乓球直徑的平均值(結果保留兩位小數).

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.已知f(x)是定義在[-1,1]上的奇函數,對任意的x1,x2∈[-1,1],均有(x2-x1)(f(x2)-f(x1))≥0.當x∈[0,1]時,2f($\frac{x}{5}$)=f(x),f(x)=1-f(1-x),則f(-$\frac{290}{2016}$)+f(-$\frac{291}{2016}$)+…+f(-$\frac{314}{2016}$)+f(-$\frac{315}{2016}$)=( 。
A.-$\frac{11}{2}$B.-6C.-$\frac{13}{2}$D.-$\frac{25}{4}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.某班50位學生期中考試數學成績的頻率直方分布圖如圖所示,其中成績分組區(qū)間是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中x的值;
(2)估計這次考試的平均分;
(3)估計這次考試的中位數(精確到0.1).

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

16.下列說法中正確的是①②③
①設隨機變量X服從二項分布B(6,$\frac{1}{2}$),則P(X=3)=$\frac{5}{16}$
②已知隨機變量X服從正態(tài)分布N(2,σ2)  且P(X<4)=0.9,則P(0<X<2)=0.4
③${∫}_{-1}^{0}$$\sqrt{1-{x}^{2}}$dx=${∫}_{0}^{1}$$\sqrt{1-{x}^{2}}$dx=$\frac{π}{4}$
④E(2X+3)=2E(X)+3,D(2X+3)=2D(X)+3.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.某農科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關系進行分析研究,他們分別記錄了11月1日至11月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數,得到如表資料:
    日期11月1日11月2日11月3日11月4日11月5日
溫差x(℃)    8   11  12   13   10
發(fā)芽數y(顆)   16   25  26   30   23
設農科所確定的研究方案是:先從這五組數據中選取2組,用剩下的3組數據求線性回歸方程,再對被選取的2組數據進行檢驗.
(1)求選取的2組數據恰好是不相鄰2天數據的概率;
(2)若選取的是11月1日與11月5日的兩組數據,請根據11月2日至11月4日的數據,求出y關于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(3)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(注:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\hat a=\overline y-\hat b\overline x$)

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.已知數列{an},{bn},{cn},滿足a1=8,b1=10,c1=6,且an+1=an,bn+1=$\frac{{c}_{n}+{a}_{n}}{2}$,cn+1=$\frac{_{n}+{a}_{n}}{2}$,則bn=2×(-$\frac{1}{2}$)n-1+8.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.若a<b<0,則下列不等式中不成立的是( 。
A.$\frac{1}{a}$>$\frac{1}$B.$\frac{1}{a-b}$>$\frac{1}{a}$C.a3<b3D.|a|>|b|

查看答案和解析>>

同步練習冊答案