16.四棱錐S-ABCD的底面是邊長為2的正方形,頂點S在底面的射影是底面正方形的中心O,SO=2,E是邊BC的中點,動點P在表面上運動,并且總保持PE⊥AC,則動點P的軌跡的周長為$\sqrt{2}+\sqrt{6}$.

分析 根據(jù)題意可知點P的軌跡為三角形EFG,其中G、F為中點,根據(jù)中位線定理求出EF、GE、GF,從而求出軌跡的周長.

解答 解:由題意知,點P的軌跡為如圖所示的三角形EFG,其中G、F為中點,
此時AC⊥EF,AC⊥GE,則AC⊥平面EFG,則PE⊥AC.
∵ABCD是邊長為2的正方形,∴$BD=2\sqrt{2}$,
∴EF=$\frac{1}{2}$BD=$\sqrt{2}$,
∵SO=2,OB=$\sqrt{2}$,∴$SB=\sqrt{{2}^{2}+(\sqrt{2})^{2}}=\sqrt{6}$,
∴GE=GF=$\frac{1}{2}$SB=$\frac{\sqrt{6}}{2}$,
∴軌跡的周長為$\sqrt{2}+\sqrt{6}$.
故答案為:$\sqrt{2}+\sqrt{6}$.

點評 本題主要考查了軌跡問題,以及點到面的距離等有關(guān)知識,同時考查了空間想象能力,計算推理能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.由變量x與y相對應(yīng)的一組數(shù)據(jù)(3,y1),(5,y2),(7,y3),(12,y4),(13,y5)得到的線性回歸方程為$\stackrel{∧}{y}$=$\frac{1}{2}$x+20,則$\sum_{i=1}^{5}{y}_{i}$=( 。
A.25B.125C.120D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知雙曲線$\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{a}$=1的漸近線方程為y=±$\frac{2\sqrt{3}}{3}$x,則此雙曲線的離心率是( 。
A.$\frac{\sqrt{7}}{2}$B.$\frac{\sqrt{13}}{3}$C.$\frac{5}{3}$D.$\frac{\sqrt{21}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知A(3,$\sqrt{3}$),O是坐標(biāo)原點,點P(x,y)的坐標(biāo)滿足$\left\{\begin{array}{l}{\sqrt{3}-y≤0}\\{x-\sqrt{3}+0≥0}\\{y≥0}\end{array}\right.$,設(shè)Z為$\overrightarrow{OA}$在$\overrightarrow{OP}$上的投影,則Z的取值范圍是(  )
A.[-$\sqrt{3}$,$\sqrt{3}$]B.[-3,3]C.[-$\sqrt{3}$,3]D.[-3,$\sqrt{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,直棱柱ABC-A1B1C1的棱長都為2,點F為棱BC的中點,點E在棱CC1上,且CC1=4CE.
(Ⅰ)求證:平面B1AF⊥面EAF;
(Ⅱ)求點C1到平面的EAF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.半徑為100mm的圓上,有一段弧長為300mm,此弧所對的圓心角的弧度數(shù)為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,$\frac{sinA}{a}$=$\frac{cosB}$,則角B=$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.f(x)是定義在非零實數(shù)集上的函數(shù),f′(x)為其導(dǎo)函數(shù),且x>0時,xf′(x)-f(x)<0,記a=$\frac{f({2}^{0.2})}{{2}^{0.2}}$,b=$\frac{f(0.{2}^{2})}{0.{2}^{2}}$,c=$\frac{f(lo{g}_{2}5)}{lo{g}_{2}5}$,則a,b,c的大小關(guān)系為c<a<b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列程序框圖中,輸出的A的值是( 。
A.$\frac{1}{2015}$B.$\frac{1}{2016}$C.$\frac{1}{2017}$D.$\frac{1}{2018}$

查看答案和解析>>

同步練習(xí)冊答案