【題目】已知橢圓E: + =1(a>b>0)的離心率e= ,并且經(jīng)過(guò)定點(diǎn)P( , ). (Ⅰ)求橢圓E的方程;
(Ⅱ)問(wèn)是否存在直線y=﹣x+m,使直線與橢圓交于A、B兩點(diǎn),滿足 = ,若存在求m值,若不存在說(shuō)明理由.

【答案】解(Ⅰ)由題意: ,又c2=a2﹣b2解得:a2=4,b2=1,即:橢圓E的方程為 (1)
(Ⅱ)設(shè)A(x1 , y1),B(x2 , y2
(*)
所以
=
,

又方程(*)要有兩個(gè)不等實(shí)根,
所以m=±2
【解析】(Ⅰ)由已知條件推導(dǎo)出 ,由此能求出橢圓E的方程.(Ⅱ)設(shè)A(x1 , y1),B(x2 , y2),由 = 得,x1x2+y1y2= ,聯(lián)立方程組利用根與系數(shù)的關(guān)系求解即可得出m的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[2019·武漢六中]袋子中有四個(gè)小球,分別寫有“武、漢、軍、運(yùn)”四個(gè)字,從中任取一個(gè)小球,有放回抽取,直到取到“軍”“運(yùn)”二字就停止,用隨機(jī)模擬的方法估計(jì)恰好在第三次停止的概率:利用電腦隨機(jī)產(chǎn)生0到3之間取整數(shù)值的隨機(jī)數(shù),分別用0,1,2,3代表“軍、運(yùn)、武、漢”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示取球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下16組隨機(jī)數(shù):

232 321 230 023 123 021 132 220

231 130 133 231 331 320 122 233

由此可以估計(jì),恰好第三次就停止的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是定義在R上的奇函數(shù),且x≥0時(shí)有

(1)寫出函數(shù)的單調(diào)區(qū)間(不要證明);

(2)解不等式;

(3)求函數(shù)在[﹣m,m]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于曲線(其中為自然對(duì)數(shù)的底數(shù))上任意一點(diǎn)處的切線,總存在在曲線上一點(diǎn)處的切線,使得,則實(shí)數(shù)的取值范圍是____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|x=4n+1,n∈Z}B={x|x=4n﹣3,n∈z},C={x|x=8n+1,n∈z},則A,B,C的關(guān)系是(
A.C是B的真子集、B是A的真子集
B.A是B的真子集、B是C的真子集
C.C是A的真子集、A=B
D.A=B=C

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某大學(xué)自主招生考試中,所有選報(bào)Ⅱ類志向的考生全部參加了“數(shù)學(xué)與邏輯”和“閱讀與表達(dá)”兩個(gè)科目的考試,成績(jī)分為A,B,C,D,E五個(gè)等級(jí).某考場(chǎng)考生的兩科考試成績(jī)的數(shù)據(jù)統(tǒng)計(jì)如圖所示,其中“數(shù)學(xué)與邏輯”科目的成績(jī)?yōu)锽的考生有10人.
(Ⅰ)求該考場(chǎng)考生中“閱讀與表達(dá)”科目中成績(jī)?yōu)锳的人數(shù);
(Ⅱ)若等級(jí)A,B,C,D,E分別對(duì)應(yīng)5分,4分,3分,2分,1分,求該考場(chǎng)考生“數(shù)學(xué)與邏輯”科目的平均分;
(Ⅲ)已知參加本考場(chǎng)測(cè)試的考生中,恰有兩人的兩科成績(jī)均為A.在至少一科成績(jī)?yōu)锳的考生中,隨機(jī)抽取兩人進(jìn)行訪談,求這兩人的兩科成績(jī)均為A的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn=3﹣ an , bn是an與an+1的等差中項(xiàng),則數(shù)列{bn}的通項(xiàng)公式為(
A.4×3n
B.4×( n
C. ×( n1
D. ×( n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種產(chǎn)品的質(zhì)量以其指標(biāo)值來(lái)衡量,其指標(biāo)值越大表明質(zhì)量越好,且指標(biāo)值大于或等于102的產(chǎn)品為優(yōu)質(zhì)品,現(xiàn)用兩種新配方(分別稱為A配方和B配方)做試驗(yàn),各生產(chǎn)了100件這種產(chǎn)品,并測(cè)量了每件產(chǎn)品的指標(biāo)值,得到了下面的試驗(yàn)結(jié)果: A配方的頻數(shù)分布表

指標(biāo)值分組

[90,94)

[94,98)

[98,102)

[102,106)

[106,110]

頻數(shù)

8

20

42

22

8

B配方的頻數(shù)分布表

指標(biāo)值分組

[90,94)

[94,98)

[98,102)

[102,106)

[106,110]

頻數(shù)

4

12

42

32

10


(1)分別估計(jì)用A配方,B配方生產(chǎn)的產(chǎn)品的優(yōu)質(zhì)品率;
(2)已知用B配方生產(chǎn)的一件產(chǎn)品的利潤(rùn)y(單位:元)與其指標(biāo)值t的關(guān)系式為y= ,估計(jì)用B配方生產(chǎn)的一件產(chǎn)品的利潤(rùn)大于0的概率,并求用B配方生產(chǎn)的上述產(chǎn)品平均每件的利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知平面直角坐標(biāo)中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為,參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系.

(1)若,求直線以及曲線的極坐標(biāo)方程;

(2)已知,,均在曲線上,且四邊形為矩形為矩形,求其周長(zhǎng)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案