【題目】某種產(chǎn)品的質(zhì)量以其指標(biāo)值來衡量,其指標(biāo)值越大表明質(zhì)量越好,且指標(biāo)值大于或等于102的產(chǎn)品為優(yōu)質(zhì)品,現(xiàn)用兩種新配方(分別稱為A配方和B配方)做試驗(yàn),各生產(chǎn)了100件這種產(chǎn)品,并測量了每件產(chǎn)品的指標(biāo)值,得到了下面的試驗(yàn)結(jié)果: A配方的頻數(shù)分布表
指標(biāo)值分組 | [90,94) | [94,98) | [98,102) | [102,106) | [106,110] |
頻數(shù) | 8 | 20 | 42 | 22 | 8 |
B配方的頻數(shù)分布表
指標(biāo)值分組 | [90,94) | [94,98) | [98,102) | [102,106) | [106,110] |
頻數(shù) | 4 | 12 | 42 | 32 | 10 |
(1)分別估計(jì)用A配方,B配方生產(chǎn)的產(chǎn)品的優(yōu)質(zhì)品率;
(2)已知用B配方生產(chǎn)的一件產(chǎn)品的利潤y(單位:元)與其指標(biāo)值t的關(guān)系式為y= ,估計(jì)用B配方生產(chǎn)的一件產(chǎn)品的利潤大于0的概率,并求用B配方生產(chǎn)的上述產(chǎn)品平均每件的利潤.
【答案】
(1)解:由試驗(yàn)結(jié)果知,用A配方生產(chǎn)的產(chǎn)品中優(yōu)質(zhì)的頻率為 =0.3
∴用A配方生產(chǎn)的產(chǎn)品的優(yōu)質(zhì)品率的估計(jì)值為0.3.
由試驗(yàn)結(jié)果知,用B配方生產(chǎn)的產(chǎn)品中優(yōu)質(zhì)品的頻率為 =0.42
∴用B配方生產(chǎn)的產(chǎn)品的優(yōu)質(zhì)品率的估計(jì)值為0.42
(2)解:用B配方生產(chǎn)的100件產(chǎn)品中,其質(zhì)量指標(biāo)值落入?yún)^(qū)間
[90,94),[94,102),[102,110]的頻率分別為0.04,0.54,0.42,
∴P(X=﹣2)=0.04,P(X=2)=0.54,P(X=4)=0.42,
即X的分布列為
X | ﹣2 | 2 | 4 |
P | 0.04 | 0.54 | 0.42 |
∴X的數(shù)學(xué)期望值EX=﹣2×0.04+2×0.54+4×0.42=2.68
【解析】(1)根據(jù)所給的樣本容量和兩種配方的優(yōu)質(zhì)的頻數(shù),兩個(gè)求比值,得到用兩種配方的產(chǎn)品的優(yōu)質(zhì)品率的估計(jì)值.(2)根據(jù)題意得到變量對應(yīng)的數(shù)字,結(jié)合變量對應(yīng)的事件和第一問的結(jié)果寫出變量對應(yīng)的概率,寫出分布列和這組數(shù)據(jù)的期望值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[2019·武邑中學(xué)]已知關(guān)于的一元二次方程,
(1)若一枚骰子擲兩次所得點(diǎn)數(shù)分別是,,求方程有兩根的概率;
(2)若,,求方程沒有實(shí)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: + =1(a>b>0)的離心率e= ,并且經(jīng)過定點(diǎn)P( , ). (Ⅰ)求橢圓E的方程;
(Ⅱ)問是否存在直線y=﹣x+m,使直線與橢圓交于A、B兩點(diǎn),滿足 = ,若存在求m值,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)常數(shù)使方程在區(qū)間上恰有三個(gè)解且,則實(shí)數(shù)的值為( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列判斷錯(cuò)誤的是______(填寫序號)
①集合{y|y=}有4個(gè)子集;
②若α≠β,則tanα≠tanβ;
③若log2a>log2b,則2a>2b;
④設(shè)函數(shù)f(x)=log2x的反函數(shù)為g(x),則g(2)=1;
⑤已知定義在R上的奇函數(shù)f(x)在(-∞,0)內(nèi)有1008個(gè)零點(diǎn),則函數(shù)f(x)的零點(diǎn)個(gè)數(shù)為2017.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)O是坐標(biāo)原點(diǎn),橢圓C:x2+3y2=6的左右焦點(diǎn)分別為F1 , F2 , 且P,Q是橢圓C上不同的兩點(diǎn), (Ⅰ)若直線PQ過橢圓C的右焦點(diǎn)F2 , 且傾斜角為30°,求證:|F1P|、|PQ|、|QF1|成等差數(shù)列;
(Ⅱ)若P,Q兩點(diǎn)使得直線OP,PQ,QO的斜率均存在.且成等比數(shù)列.求直線PQ的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=x+有如下性質(zhì):如果常數(shù)t>0,那么該函數(shù)在(0,]上是減函數(shù),在[,+∞)上是增函數(shù).
(1)已知(x)=,x∈[0,1]利用上述性質(zhì),求函數(shù)f(x)的值域;
(2)對于(1)中的函數(shù)f(x)和函數(shù)g(x)=-x+2a.若對任意x1∈[0,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四個(gè)不同的盒子里面放了個(gè)不同的水果,分別是桔子、香蕉、葡萄、以及西瓜,讓小明、小紅、小張、小李四個(gè)人進(jìn)行猜測
小明說:第個(gè)盒子里面放的是香蕉,第個(gè)盒子里面放的是葡萄;
小紅說:第個(gè)盒子里面放的是香蕉,第個(gè)盒子里面放的是西瓜;
小張說:第個(gè)盒子里面敬的是香蕉,第個(gè)盒子里面放的是葡萄;
小李說:第個(gè)盒子里面放的是桔子,第個(gè)盒子里面放的是葡萄;
如果說:“小明、小紅、小張、小李,都只說對了一半。”則可以推測,第個(gè)盒子里裝的是( )
A. 西瓜 B. 香蕉 C. 葡萄 D. 桔子
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com