分析 (Ⅰ)由$2{S_n}=n{a_{n+1}}-\frac{{n({n+1})({n+2})}}{3}$…①當(dāng)n≥2時(shí),$2{S_{n-1}}=({n-1}){a_n}-\frac{{({n-1})n({n+1})}}{3}$…②
由①-②,得 2Sn-2Sn-1=nan+1-(n-1)an-n(n+1),
可得數(shù)列$\left\{{\frac{a_n}{n}}\right\}$從第二項(xiàng)起是公差為1的等差數(shù)列,即可求數(shù)列通項(xiàng).
(Ⅱ)當(dāng)n≥3時(shí),∵n2>(n-1)•(n+1),∴$\frac{1}{n^2}<\frac{1}{{({n-1})•({n+1})}}$
$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+…\frac{1}{{a}_{n}}$<$1+\frac{1}{4}+\frac{1}{2}({\frac{1}{2}-\frac{1}{4}})+\frac{1}{2}({\frac{1}{3}-\frac{1}{5}})+…+\frac{1}{2}({\frac{1}{n-2}-\frac{1}{n}})+\frac{1}{2}({\frac{1}{n-1}-\frac{1}{n+1}})$
=$\frac{5}{4}+\frac{1}{2}({\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{n-2}-\frac{1}{n}+\frac{1}{n-1}-\frac{1}{n+1}})$
=$\frac{5}{4}+\frac{1}{2}({\frac{1}{2}+\frac{1}{3}-\frac{1}{n}-\frac{1}{n+1}})=\frac{5}{3}+\frac{1}{2}({-\frac{1}{n}-\frac{1}{n+1}})<\frac{5}{3}$即可.
解答 解:(Ⅰ)由$2{S_n}=n{a_{n+1}}-\frac{{n({n+1})({n+2})}}{3}$…①
當(dāng)n≥2時(shí),$2{S_{n-1}}=({n-1}){a_n}-\frac{{({n-1})n({n+1})}}{3}$…②
由①-②,得 2Sn-2Sn-1=nan+1-(n-1)an-n(n+1),
∵2an=2Sn-2Sn-1∴2an=nan+1-(n-1)an-n(n+1)∴$\frac{{{a_{n+1}}}}{n+1}-\frac{a_n}{n}=1$,
∴數(shù)列$\left\{{\frac{a_n}{n}}\right\}$從第二項(xiàng)起是公差為1的等差數(shù)列.
∴當(dāng)n=1時(shí),$2{a_1}=2{S_1}={a_2}-\frac{1}{3}-1-\frac{2}{3}={a_2}-2$,
又a1=1,∴a2=4
∴$\frac{a_n}{n}=2+1×({n-2})=n$,∴${a_n}={n^2}({n≥2})$當(dāng)n=1時(shí),上式顯然成立.∴${a_n}={n^2},n∈{N^*}$
(Ⅱ)證明:由(2)知,${a_n}={n^2},n∈{N^*}$①當(dāng)n=1時(shí),$\frac{1}{a_1}=1<\frac{5}{3}$,∴原不等式成立.②當(dāng)n=2時(shí),$\frac{1}{a_1}+\frac{1}{a_2}=1+\frac{1}{4}<\frac{5}{3}$,∴原不等式亦成立.
③當(dāng)n≥3時(shí),∵n2>(n-1)•(n+1),∴$\frac{1}{n^2}<\frac{1}{{({n-1})•({n+1})}}$
$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+…\frac{1}{{a}_{n}}$<$1+\frac{1}{4}+\frac{1}{2}({\frac{1}{2}-\frac{1}{4}})+\frac{1}{2}({\frac{1}{3}-\frac{1}{5}})+…+\frac{1}{2}({\frac{1}{n-2}-\frac{1}{n}})+\frac{1}{2}({\frac{1}{n-1}-\frac{1}{n+1}})$
=$\frac{5}{4}+\frac{1}{2}({\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{n-2}-\frac{1}{n}+\frac{1}{n-1}-\frac{1}{n+1}})$
=$\frac{5}{4}+\frac{1}{2}({\frac{1}{2}+\frac{1}{3}-\frac{1}{n}-\frac{1}{n+1}})=\frac{5}{3}+\frac{1}{2}({-\frac{1}{n}-\frac{1}{n+1}})<\frac{5}{3}$
∴當(dāng)n≥3時(shí),∴原不等式亦成立.綜上,對(duì)一切正整數(shù)n,有$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_n}<\frac{5}{3}$.
點(diǎn)評(píng) 本題考查了數(shù)列遞推式、通項(xiàng)公式,考查了數(shù)列求和及放縮法,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{78}{71}$ | B. | $\frac{3}{2}$ | C. | $\frac{4}{3}$ | D. | $\frac{7}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4cos5-2sin5 | B. | -2sin5-4cos5 | C. | 2sin5-4cos5 | D. | -2sin5 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com