7.已知圓C:x2+(y-1)2=5,直線l:mx-y+1-m=0.
(1)求證:對m∈R,直線l與圓C總有兩個(gè)不同交點(diǎn);
(2)設(shè)l與圓C交于不同兩點(diǎn)A,B,求弦AB的中點(diǎn)M的軌跡方程.

分析 (1)求出圓心C到直線l的距離d和圓的半徑r,根據(jù)d,r的大小關(guān)系即可得出直線l與圓C相交;
(2)設(shè)AB中點(diǎn)M(x,y),討論AB的斜率,由KAB•KCM=-1,化簡可得AB中點(diǎn)M的軌跡方程.

解答 解:(1)證明:圓C的圓心為C(0,1),半徑為r=$\sqrt{5}$,
圓心C到直線l的距離d=$\frac{|m|}{\sqrt{{m}^{2}+1}}$<1,
∴d<r,
∴直線l與圓C相交,即直線l與圓C總有兩個(gè)不同交點(diǎn).
(2)設(shè)AB中點(diǎn)M(x,y),當(dāng)AB的斜率存在時(shí),由題意可得CM⊥AB,故有KAB•KCM=-1.
∴$\frac{y-1}{x-1}$=-1,化簡可得(x-$\frac{1}{2}$)2+(y-1)2=$\frac{1}{4}$,
即AB中點(diǎn)M的軌跡方程為(x-$\frac{1}{2}$)2+(y-1)2=$\frac{1}{4}$.
當(dāng)AB的斜率不存在時(shí),直線AB的方程為x=1,此時(shí)AB的中點(diǎn)M的坐標(biāo)為(1,1),
也滿足(x-$\frac{1}{2}$)2+(y-1)2=$\frac{1}{4}$.
綜上可得,AB中點(diǎn)M的軌跡方程為(x-$\frac{1}{2}$)2+(y-1)2=$\frac{1}{4}$.

點(diǎn)評 本題主要考查直線和圓的位置關(guān)系的判定,直線過定點(diǎn)問題,求點(diǎn)的軌跡方程,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知a>0,函數(shù)f(x)=a2x3-3ax2+2,g(x)=-3ax+3.
(1)若a=1,求函數(shù)f(x)的圖象在點(diǎn)x=1處的切線方程;
(2)求函數(shù)f(x)在區(qū)間[-1,1]上的極值;
(3)若?x0∈(0,$\frac{1}{2}$],使不等式f(x0)>g(x0)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}(x+1)|,x∈(-1,3)}\\{\frac{4}{x-1},x∈[3,+∞)}\end{array}\right.$則函數(shù)g(x)=f[f(x)]-1的零點(diǎn)個(gè)數(shù)為( 。
A.1B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=-sin2x+msinx+2,當(dāng)x∈[$\frac{π}{6}$,$\frac{2π}{3}$]時(shí)函數(shù)有最大值為$\frac{3}{2}$,求此時(shí)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.用反證法證明“如果a≤b,那么$\root{3}{a}≤\root{3}$”,則假設(shè)的內(nèi)容應(yīng)是$\root{3}{a}>\root{3}$..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=lnx-x.
(1)求f(x)的單調(diào)區(qū)間及最大值;
(2)若數(shù)列{an}的通項(xiàng)公式為${a_n}=1+\frac{1}{2^n}({n∈{N^*}})$,試結(jié)合(1)中有關(guān)結(jié)論證明:a1•a2•a3…an<e(e為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.X=1!+2!+3!+…+100!,則X的個(gè)位數(shù)字為( 。
A.1B.3C.5D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.用邊長為48cm的正方形鐵皮做一個(gè)無蓋的鐵盒,在鐵皮的四角各截去一個(gè)面積相等的小正方形,然后把四邊折起,就能焊成一個(gè)鐵盒.則所做的鐵盒容積最大時(shí),在四角截去的小正方形的邊長為( 。
A.6 cmB.8 cmC.10 cmD.12 cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知實(shí)數(shù)x、y滿足$\left\{\begin{array}{l}x≥1\\ y≤a\\ x-y≤0\end{array}\right.({a>1})$,若z=2x+y的最大值為9,則實(shí)數(shù)a的值為(  )
A.2B.3C.4D.5

查看答案和解析>>

同步練習(xí)冊答案