【題目】已知在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為ρ= 4cosθ,直線l的參數(shù)方程為(t為參數(shù)).
(1)求曲線的直角坐標(biāo)方程及直線l的普通方程;
(2)若曲線的參數(shù)方程為(α為參數(shù)),曲線上點(diǎn)P的極角為Q為曲線上的動點(diǎn),求PQ的中點(diǎn)M到直線l距離的最大值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)積極響應(yīng)國家“科技創(chuàng)新”的號召,大力研發(fā)人工智能產(chǎn)品,為了對一批新研發(fā)的產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù),如下表所示:
試銷單價(jià)(百元) | 1 | 2 | 3 | 4 | 5 | 6 |
產(chǎn)品銷量(件) | 91 | 86 | 78 | 73 | 70 |
附:參考公式:,,
參考數(shù)據(jù):,,.
(1)求的值;
(2)已知變量,具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(件)關(guān)于試銷單價(jià)(百元)的線性回歸方程(計(jì)算結(jié)果精確到整數(shù)位);
(3)用表示用正確的線性回歸方程得到的與對應(yīng)的產(chǎn)品銷量的估計(jì)值.當(dāng)銷售數(shù)據(jù)的殘差的絕對值時(shí),則將銷售數(shù)據(jù)稱為一個(gè)“有效數(shù)據(jù)”.現(xiàn)從這6組銷售數(shù)據(jù)中任取2組,求抽取的2組銷售數(shù)據(jù)都是“有效數(shù)據(jù)”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)一種產(chǎn)品的標(biāo)準(zhǔn)長度為,只要誤差的絕對值不超過就認(rèn)為合格,工廠質(zhì)檢部抽檢了某批次產(chǎn)品1000件,檢測其長度,繪制條形統(tǒng)計(jì)圖如圖:
(1)估計(jì)該批次產(chǎn)品長度誤差絕對值的數(shù)學(xué)期望;
(2)如果視該批次產(chǎn)品樣本的頻率為總體的概率,要求從工廠生產(chǎn)的產(chǎn)品中隨機(jī)抽取2件,假設(shè)其中至少有1件是標(biāo)準(zhǔn)長度產(chǎn)品的概率不小于0.8時(shí),該設(shè)備符合生產(chǎn)要求.現(xiàn)有設(shè)備是否符合此要求?若不符合此要求,求出符合要求時(shí),生產(chǎn)一件產(chǎn)品為標(biāo)準(zhǔn)長度的概率的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
已知函數(shù)(其中a是實(shí)數(shù)).
(1)求的單調(diào)區(qū)間;
(2)若設(shè),且有兩個(gè)極值點(diǎn) ,求取值范圍.(其中e為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的展開式中第5項(xiàng)與第7項(xiàng)的二項(xiàng)數(shù)系數(shù)相等,且展開式的各項(xiàng)系數(shù)之和為1024,則下列說法正確的是( )
A.展開式中奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為256
B.展開式中第6項(xiàng)的系數(shù)最大
C.展開式中存在常數(shù)項(xiàng)
D.展開式中含項(xiàng)的系數(shù)為45
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)已知橢圓,直線不過原點(diǎn)且不平行于坐標(biāo)軸,與有兩個(gè)交點(diǎn),,線段的中點(diǎn)為.
(Ⅰ)證明:直線的斜率與的斜率的乘積為定值;
(Ⅱ)若過點(diǎn),延長線段與交于點(diǎn),四邊形能否為平行四邊形?若能,求此時(shí)的斜率,若不能,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com