18.設(shè)函數(shù)f(x)=|x+2|-|x-2|,g(x)=x+$\frac{1}{2}$.
(Ⅰ)求不等式f(x)≥g(x)的解集;
(Ⅱ)若?x∈R,f(x)≥t2-5t恒成立,求實(shí)數(shù)t的取值范圍.

分析 (Ⅰ)去掉絕對值化簡函數(shù)的解析式,通過當(dāng)x<-2時,當(dāng)-2≤x≤2時,當(dāng)x>2時,轉(zhuǎn)化不等式求解即可.(Ⅱ)求出函數(shù)f(x)min,利用?x∈R,f(x)≥t2-5t恒成立,求解t的取值范圍即可.

解答 解:(Ⅰ)由題可得$f(x)=\left\{{\begin{array}{l}{-4,x<-2}\\ \begin{array}{l}2x,-2≤x≤2\\ 4,x>2\end{array}\end{array}}\right.$,
當(dāng)x<-2時,由可得$x≤-\frac{9}{2}$,所以$x≤-\frac{9}{2}$;
當(dāng)-2≤x≤2時,由可得$x≥\frac{1}{2}$,所以$\frac{1}{2}≤x≤2$;
當(dāng)x>2時,由可得$x≤\frac{7}{2}$,所以$2<x≤\frac{7}{2}$;
綜上可得,不等式的解集為$({-∞,-\frac{9}{2}}]∪[{\frac{1}{2},\frac{7}{2}}]$.…(5分)
(Ⅱ)由(Ⅰ)得$f(x)=\left\{{\begin{array}{l}{-4,x<-2}\\ \begin{array}{l}2x,-2≤x≤2\\ 4,x>2\end{array}\end{array}}\right.$,
所以f(x)min=-4,若?x∈R,f(x)≥t2-5t恒成立,解得1≤t≤4,
綜上,t的取值范圍為[1,4].…(10分)

點(diǎn)評 本題考查不等式的解法函數(shù)恒成立條件的應(yīng)用,考查轉(zhuǎn)化思想以及計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在平面直角坐標(biāo)系中,曲線${C_1}:\left\{\begin{array}{l}x=2+2cosα\\ y=sinα\end{array}\right.$(α為參數(shù))經(jīng)伸縮變換$\left\{\begin{array}{l}{x^'}=\frac{x}{2}\\{y^'}=y\end{array}\right.$后的曲線為C2,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求曲線C2的極坐標(biāo)方程;
(2)A,B是曲線C2上兩點(diǎn),且$∠AOB=\frac{π}{3}$,求|OA|+|OB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.從1,2,3,4四個數(shù)字中任取兩個不同數(shù)字,則這兩個數(shù)字之積小于5的概率為(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=|x-1|+|x+1|,P為不等式f(x)>4的解集.
(Ⅰ)求P;
(Ⅱ)證明:當(dāng)m,n∈P時,|mn+4|>2|m+n|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)集合$A=\left\{{x|{{log}_2}({{x^2}-x-4})>1}\right\}$,$B=\left\{{x|\sqrt{x-2}<2}\right\}$,則A∩B=( 。
A.(3,6)B.(-∞,-2)∪(3,6)C.(3,4)D.(-∞,-2)∪(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x≥0\\ x≤y\\ x+y≥2\end{array}\right.$,則z=2x+y的最小值是( 。
A.0B.2C.3D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知點(diǎn)P是拋物線y2=4x上的一點(diǎn),拋物線的焦點(diǎn)為F,若|PF|=5,直線PF的斜率為k,則|k|=$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.一鮮花店根據(jù)一個月(30天)某種鮮花的日銷售量與銷售天數(shù)統(tǒng)計如下,將日銷售量落入各組區(qū)間頻率視為概率.
日銷售量(枝)0~5050~100100~150150~200200~250
銷售天數(shù)3天5天13天6天3天
(1)試求這30天中日銷售量低于100枝的概率;
(2)若此花店在日銷售量低于100枝的時候選擇2天作促銷活動,求這2天恰好是在日銷售量低于50枝時的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A={x|0≤x≤5},B={x∈N*|x-1≤2},則A∩B=( 。
A.{x|0≤x≤3}B.{1,2,3}C.{0,1,2,3}D.{x|1≤x≤3}

查看答案和解析>>

同步練習(xí)冊答案