精英家教網 > 高中數學 > 題目詳情
設橢圓)的右焦點與拋物線的焦點相同,離心率為,則此橢圓的方程為                     (   )
A.B. C.D.
B
此題考查圓錐曲線的知識
,
所以為所求
答案  B
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本題滿分10分)
已知拋物線與直線相切于點A(1,1)。
(1)求的解析式;
(2)若對任意,不等式恒成立,求實數的取值范圍。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分15分)如圖,設是拋物線:上動點。圓:的圓心為點M,過點做圓的兩條切線,交直線兩點。(Ⅰ)求的圓心到拋物線 準線的距離。
(Ⅱ)是否存在點,使線段被拋物線在點處得切線平分,若存在,求出點的坐標;若不存在,請說明理由。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,已知點A(-1, 0)、B(1, 0), 動點C滿足條件:△ABC的周長為.記動點C的軌跡為曲線W
(Ⅰ)求W的方程;
(Ⅱ)經過點(0, )且斜率為k的直線l與曲線W有兩個不同的交點PQ,求k的取值范圍;
(Ⅲ)已知點M),N(0, 1),在(Ⅱ)的條件下,是否存在常數k,使得向量 與共線?如果存在,求出k的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若雙曲線與直線無交點,則離心率的取值范圍是
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題


(本題滿分12分)
已知橢圓)的離心率,左、右焦點分別為、,點滿足:在線段的中垂線上.
(1)求橢圓的方程;
(2)若斜率為)的直線軸、橢圓順次相交于點、,且,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知雙曲線2x2-2y2=1的兩個焦點為F1,F2,P為動點,若|PF1|+|PF2|=4.
(1)求動點P的軌跡E的方程;
(2)求cos∠F1PF2的最小值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓方程為,射線與橢圓的交點為,過作傾斜角互補的兩條直線,分別與橢圓于兩點(異于).
(1)求證:直線;
(2)求面積的最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

如圖,已知橢圓的焦點為、,點為橢圓上任意一點,過的外角平分線的垂線,垂足為點,過點軸的垂線,垂足為,線段的中點為,則點的軌跡方程為________________

查看答案和解析>>

同步練習冊答案