【題目】△ABC中,角A,B,C對(duì)邊的邊長(zhǎng)分別是a,b,c,且a(cosB+cosC)=b+c.
(1)求證:A;
(2)若△ABC外接圓半徑為1,求△ABC周長(zhǎng)的取值范圍.
【答案】(1) 見解析(2) (4,2+2]
【解析】
(1)根據(jù)余弦定理求得cosB,和cosC代入題設(shè)等式中,整理得(b+c)(a2﹣b2﹣c2)=0進(jìn)而求得a2=b2+c2.判斷出A.
(2)根據(jù)直角三角形外接圓的性質(zhì)可求得a,進(jìn)而求得b+c的表達(dá)式,進(jìn)而根據(jù)B的范圍確定b+c的范圍,進(jìn)而求得三角形周長(zhǎng)的范圍.
解:(1)證明:∵a(cosB+cosC)=b+c
∴由余弦定理得aab+c.
∴整理得(b+c)(a2﹣b2﹣c2)=0.
∵b+c>0,∴a2=b2+c2.故A.
(2)∵△ABC外接圓半徑為1,A,∴a=2.
∴b+c=2(sinB+cosB)=2sin(B).
∵0<B,∴B,∴2<b+c≤2.
∴4<a+b+c≤2+2,
故△ABC周長(zhǎng)的取值范圍是(4,2+2].
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)甲,乙兩個(gè)研發(fā)小組,他們研發(fā)新產(chǎn)品成功的概率分別為和,現(xiàn)安排甲組研發(fā)新產(chǎn)品,乙組研發(fā)新產(chǎn)品.設(shè)甲,乙兩組的研發(fā)是相互獨(dú)立的.
(1)求至少有一種新產(chǎn)品研發(fā)成功的概率;
(2)若新產(chǎn)品研發(fā)成功,預(yù)計(jì)企業(yè)可獲得萬(wàn)元,若新產(chǎn)品研發(fā)成功,預(yù)計(jì)企業(yè)可獲得利潤(rùn)萬(wàn)元,求該企業(yè)可獲得利潤(rùn)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)對(duì)現(xiàn)有設(shè)備進(jìn)行了改造,為了了解設(shè)備改造后的效果,現(xiàn)從設(shè)備改造前后生產(chǎn)的大量產(chǎn)品中各抽取了100件產(chǎn)品作為樣本,檢測(cè)其質(zhì)量指標(biāo)值,若質(zhì)量指標(biāo)值在內(nèi),則該產(chǎn)品視為合格品,否則視為不合格品.圖1是設(shè)備改造前的樣本的頻率分布直方圖,表1是設(shè)備改造后的樣本的頻數(shù)分布表.
(1)完成列聯(lián)表,并判斷是否有99%的把握認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與設(shè)備改造有關(guān):
設(shè)備改造前 | 設(shè)備改造后 | 合計(jì) | |
合格品 | |||
不合格品 | |||
合計(jì) |
(2)根據(jù)圖1和表1提供的數(shù)據(jù),試從產(chǎn)品合格率的角度對(duì)改造前后設(shè)備的優(yōu)劣進(jìn)行比較;
(3)企業(yè)將不合格品全部銷毀后,根據(jù)客戶需求對(duì)合格品進(jìn)行等級(jí)細(xì)分,質(zhì)量指標(biāo)值落在內(nèi)的定為一等品,每件售價(jià)180元;質(zhì)量指標(biāo)值落在或內(nèi)的定為二等品,每件售價(jià)150元;其他的合格品定為三等品,每件售價(jià)120元.根據(jù)頻數(shù)分布表1的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有合格產(chǎn)品中抽到一件相應(yīng)等級(jí)產(chǎn)品的概率.現(xiàn)有一名顧客隨機(jī)購(gòu)買兩件產(chǎn)品,設(shè)其支付的費(fèi)用為(單位:元),求的分布列和數(shù)學(xué)期望.
附:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一塊長(zhǎng)方形區(qū)域,,,在邊的中點(diǎn)處有一個(gè)可轉(zhuǎn)動(dòng)的探照燈,其照射角始終為,設(shè),探照燈照射在長(zhǎng)方形內(nèi)部區(qū)域的面積為.
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)當(dāng)時(shí),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知實(shí)數(shù),定義域?yàn)?/span>的函數(shù)是偶函數(shù),其中為自然對(duì)數(shù)的底數(shù).
(Ⅰ)求實(shí)數(shù)值;
(Ⅱ)判斷該函數(shù)在上的單調(diào)性并用定義證明;
(Ⅲ)是否存在實(shí)數(shù),使得對(duì)任意的,不等式恒成立.若存在,求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且對(duì)任意正整數(shù),都有成立.記.
(Ⅰ)求數(shù)列和的通項(xiàng)公式;
(Ⅱ)設(shè),數(shù)列的前項(xiàng)和為,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某旅游景點(diǎn)有50輛自行車供游客租賃使用,管理這些自行車的費(fèi)用是每日115元。根據(jù)經(jīng)驗(yàn),若每輛自行車的日租金不超過(guò)6元,則自行車可以全部租出;若超過(guò)6元,則每提高1元,租不出去的自行車就增加3輛.規(guī)定:每輛自行車的日租金不超過(guò)20元,每輛自行車的日租金元只取整數(shù),并要求出租所有自行車一日的總收入必須超過(guò)一日的管理費(fèi)用,用表示出租所有自行車的日凈收入(即一日中出租所以自行車的總收入減去管理費(fèi)用后的所得).
(1)求函數(shù)的解析式及定義域;
(2)試問(wèn)日凈收入最多時(shí)每輛自行車的日租金應(yīng)定為多少元?日凈收入最多為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的右焦點(diǎn)為,過(guò)點(diǎn)作與軸垂直的直線交橢圓于,兩點(diǎn)(點(diǎn)在第一象限),過(guò)橢圓的左頂點(diǎn)和上頂點(diǎn)的直線與直線交于點(diǎn),且滿足,設(shè)為坐標(biāo)原點(diǎn),若,,則該橢圓的離心率為( )
A. B. C. 或 D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com