【題目】某旅游景點有50輛自行車供游客租賃使用,管理這些自行車的費用是每日115元。根據(jù)經(jīng)驗,若每輛自行車的日租金不超過6元,則自行車可以全部租出;若超過6元,則每提高1元,租不出去的自行車就增加3.規(guī)定:每輛自行車的日租金不超過20元,每輛自行車的日租金元只取整數(shù),并要求出租所有自行車一日的總收入必須超過一日的管理費用,用表示出租所有自行車的日凈收入(即一日中出租所以自行車的總收入減去管理費用后的所得).

1)求函數(shù)的解析式及定義域;

2)試問日凈收入最多時每輛自行車的日租金應定為多少元?日凈收入最多為多少元?

【答案】1;(2)當每輛自行車日租金定在11元時才能使日凈收入最多,為270.

【解析】

1)函數(shù)出租自行車的總收入管理費;當時,全部租出;當時,每提高1元,租不出去的就增加3輛;所以要分段求出解析式;(2)由于函數(shù)解析式是分段函數(shù),所以先在每一段內(nèi)求出函數(shù)最大值,再比較得出函數(shù)的最大值.

1)當時,,令,解得

,,且

時,

綜上可知

2)當,且時,是增函數(shù),

時,元.

,時,

時,元.

綜上所述,當每輛自行車日租金定在11元時才能使日凈收入最多,為270元.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某射擊運動員在一次射擊中射中10環(huán)、9環(huán)、8環(huán)、7環(huán)、7環(huán)以下的概率分別為0.240.28,0.19,0.160.13.計算這名射擊運動員在一次射擊中:

1)射中10環(huán)或9環(huán)的概率;

2)射中8環(huán)以下的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以直角坐標系的原點為極點,以軸的正半軸為極軸,且兩個坐標系取相等的長度單位,已知直線的參數(shù)方程為為參數(shù),),曲線的極坐標方程為

(1)若,求直線的普通方程和曲線的直角坐標方程;

(2)設直線與曲線相交于,兩點,當變化時,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ABC中,角A,B,C對邊的邊長分別是a,b,c,且acosB+cosC)=b+c

1)求證:A;

2)若△ABC外接圓半徑為1,求△ABC周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為了適應市場需求對產(chǎn)品結(jié)構(gòu)做了重大調(diào)整,調(diào)整后初期利潤增長迅速,之后增長越來越慢,若要建立恰當?shù)暮瘮?shù)模型來反映該公司調(diào)整后利潤與時間的關(guān)系,可選用

A.一次函數(shù)B.二次函數(shù)

C.指數(shù)型函數(shù)D.對數(shù)型函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知傾斜角為的直線經(jīng)過拋物線的焦點,與拋物線相交于、兩點,且.

(Ⅰ)求拋物線的方程;

(Ⅱ)過點的兩條直線、分別交拋物線于點、、,線段的中點分別為、.如果直線的傾斜角互余,求證:直線經(jīng)過一定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】國慶期間,某旅行社組團去風景區(qū)旅游,若旅行團人數(shù)在30人或30人以下,每人需交費用為900元;若旅行團人數(shù)多于30,則給予優(yōu)惠:每多1,人均費用減少10,直到達到規(guī)定人數(shù)75人為止.旅行社需支付各種費用共計15000元.

1)寫出每人需交費用關(guān)于人數(shù)的函數(shù);

2)旅行團人數(shù)為多少時,旅行社可獲得最大利潤?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圓臺的上、下底面半徑分別為、,母線長,從圓臺母線的中點拉一條繩子繞圓臺側(cè)面轉(zhuǎn)到在下底面,求:

1繩子的最短長度;

2在繩子最短時,上底圓周上的點到繩子的最短距離

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù),如果存在實數(shù)使得,那么稱的生成函數(shù).

1)函數(shù),是否為的生成函數(shù)?說明理由;

2)設,,當時生成函數(shù),求的對稱中心(不必證明);

3)設,取,,生成函數(shù),若函數(shù)的最小值是5,求實數(shù)的值.

查看答案和解析>>

同步練習冊答案