7.已知橢圓E的右焦點(diǎn)與拋物線y2=4x的焦點(diǎn)重合,點(diǎn)M$(1,\frac{3}{2})$在橢圓E上.
(1)求橢圓E的方程;
(2)設(shè)P(-4,0),直線y=kx+1與橢圓E交于A,B兩點(diǎn),若直線PA,PB均與圓x2+y2=r2(r>0)相切,求k的值.

分析 (1)求出拋物線的焦點(diǎn),可得橢圓的焦點(diǎn),即c=1,再由橢圓的定義,結(jié)合兩點(diǎn)的距離公式,可得a=2,由a,b,c的關(guān)系,可得b,進(jìn)而得到橢圓方程;
(2)由題意可得kPA+kPB=0,設(shè)A(x1,y1),B(x2,y2),運(yùn)用兩點(diǎn)的斜率公式和點(diǎn)在直線上,將直線y=kx+1代入橢圓方程,運(yùn)用韋達(dá)定理,代入可得k的方程,化簡(jiǎn)整理,解方程可得k的值.

解答 解:(1)拋物線y2=4x的焦點(diǎn)為(1,0),
則橢圓的焦點(diǎn)為(-1,0),(1,0),即c=1,
點(diǎn)M$(1,\frac{3}{2})$在橢圓E上,
由橢圓的定義可得2a=$\sqrt{(1+1)^{2}+(\frac{3}{2})^{2}}$+$\sqrt{(1-1)^{2}+(\frac{3}{2})^{2}}$
=$\frac{5}{2}$+$\frac{3}{2}$=4,
即a=2,b=$\sqrt{{a}^{2}-{c}^{2}}$=$\sqrt{3}$,
則橢圓方程為$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1;
(2)由P在x軸上,直線PA,PB均與圓x2+y2=r2(r>0)相切,
可得kPA+kPB=0,
設(shè)A(x1,y1),B(x2,y2),則$\frac{{y}_{1}}{{x}_{1}+4}$+$\frac{{y}_{2}}{{x}_{2}+4}$=0,
即有x1y2+4y2+x2y1+4y1=0,
由y1=kx1+1,y2=kx2+1,
可得2kx1x2+(x1+x2)(4k+1)+8=0,①
由直線y=kx+1代入橢圓方程可得(3+4k2)x2+8kx-8=0,
判別式△=64k2+32(3+4k2)>0顯然成立,
x1+x2=-$\frac{8k}{3+4{k}^{2}}$,x1x2=-$\frac{8}{3+4{k}^{2}}$,
代入①,可得2k•(-$\frac{8}{3+4{k}^{2}}$)+(-$\frac{8k}{3+4{k}^{2}}$)(4k+1)+8=0,
解得k=1.

點(diǎn)評(píng) 本題考查橢圓的方程的求法,注意運(yùn)用拋物線的焦點(diǎn)和橢圓的定義,考查直線和橢圓方程聯(lián)立,運(yùn)用韋達(dá)定理和直線的斜率公式,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S9=54,則a1+a5+a9=( 。
A.9B.15C.18D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.據(jù)統(tǒng)計(jì),某城市的火車(chē)站春運(yùn)期間日接送旅客人數(shù)X(單位:萬(wàn))服從正態(tài)分布X~N(6,0.82),則日接送人數(shù)在6萬(wàn)到6.8萬(wàn)之間的概率為(  )
(P(|X-μ|<σ)=0.6826,P(|X-μ|<2σ)=0.9544,P(|X-μ|<3σ)=0.9974)
A.0.6826B.0.9544C.0.9974D.0.3413

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.?dāng)?shù)列{an}是等比數(shù)列,滿足a2=2,a2+a4+a6=14,則a6=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知數(shù)列{an}是等比數(shù)列,則“a2>a1”是“數(shù)列{an}為遞增數(shù)列”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{2}cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)=4$\sqrt{2}$.
(1)求曲線C的普通方程與直線l的直角坐標(biāo)方程;
(2)設(shè)P為曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知實(shí)數(shù)a,b,c滿足a,b,c∈R+
(Ⅰ)若ab=1,證明:($\frac{1}{a}$+$\frac{1}$)2≥4;
(Ⅱ)若a+b+c=3,且$\sqrt{a}$+$\sqrt$+$\sqrt{c}$≤|2x-1|-|x-2|+3恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知數(shù)列{an},{bn}的首項(xiàng)a1=b1=1,且滿足(an+1-an2=4,|bn+1|=q|bn|,其中n∈N*.設(shè)數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn,Tn
(Ⅰ)若不等式an+1>an對(duì)一切n∈N*恒成立,求Sn;
(Ⅱ)若常數(shù)q>1且對(duì)任意的n∈N*,恒有$\sum_{k=1}^{n+1}$|bk|≤4|bn|,求q的值;
(Ⅲ)在(2)的條件下且同時(shí)滿足以下兩個(gè)條件:
(ⅰ)若存在唯一正整數(shù)p的值滿足ap<ap-1;
(ⅱ) Tm>0恒成立.試問(wèn):是否存在正整數(shù)m,使得Sm+1=4bm,若存在,求m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知x,y滿足$\left\{{\begin{array}{l}{y≥x,\;}\\{x+y≤4}\\{2x-y≥k}\end{array}}\right.$若z=x+2y有最大值8,則實(shí)數(shù)k的值為-4.

查看答案和解析>>

同步練習(xí)冊(cè)答案