(本小題滿分13分)已知橢圓的中心在原點,焦點在y軸上,離心率為,且
橢圓經過圓的圓心C。
(I)求橢圓的標準方程;
(II)設直線與橢圓交于A、B兩點,點且|PA|=|PB|,求直線的方程。

(1)由圓C的方程可知:圓心C(1,-2)                 ————2分
設橢圓的方程為                      
橢圓過圓心C,可得:
,且
解得:
即橢圓的方程為:                              ————6分
(2)將直線方程與橢圓方程聯(lián)立方程組消元可得:
                                 

法一:設AB中點M
其中,                    ————8分
,則有:,解得:                  ————10分
,顯然滿足題意。
故直線的方程為: 或 或           ————13分
法二:由,代入可得方程:可解出

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C的中心在原點,焦點在軸上,以兩個焦點和短軸的兩個端點為頂點的四邊形是一個面積為8的正方形(記為Q).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設點P是橢圓C的左準線與軸的交點,過點P的直線與橢圓C相交于M,N兩點,當線段MN的中點落在正方形Q內(包括邊界)時,求直線的斜率的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
橢圓過點P,且離心率為,F(xiàn)為橢圓的右焦點,、兩點在橢圓上,且 ,定點(-4,0).

(Ⅰ)求橢圓C的方程;
(Ⅱ)當時 ,問:MN與AF是否垂直;并證明你的結論.
(Ⅲ)當、兩點在上運動,且 =6, 求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題11分)如圖1,拋物線y=ax2+bx+c(a≠0)的頂點為(1,4),交x軸于A、B,交y軸于D,其中B點的坐標為(3,0)
(1)求拋物線的解析式
(2)如圖2,過點A的直線與拋物線交于點E,交y軸于點F,其中E點的橫坐標為2,若直線PQ為拋物線的對稱軸,點G為PQ上一動點,則軸上是否存在一點H,使D、G、F、H四點圍成的四邊形周長最小.若存在,求出這個最小值及G、H的坐標;若不存在,請說明理由.
(3)如圖3,拋物線上是否存在一點,過點軸的垂線,垂足為,過點作直線,交線段于點,連接,使,若存在,求出點的坐標;若不存在,說明理由.
      圖1                       圖2                          圖3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分) 如圖,為半圓,AB為半圓直徑,O為半圓圓心,且OD⊥AB,Q為線段OD的中點,已知|AB|=4,曲線C過Q點,動點P在曲線C上運動且保持|PA|+|PB|的值不變.

(1)建立適當?shù)钠矫嬷苯亲鴺讼,求曲線C的方程;
(2)過D點的直線l與曲線C相交于不同的兩點M、N,且M在D、N之間,設=λ,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓、拋物線的焦點均在軸上,的中心和的頂點均為原點,從每條曲線上取兩個點,將其坐標記錄于下表中:


3
2
4



0
4

(Ⅰ)求的標準方程;
(Ⅱ)請問是否存在直線滿足條件:①過的焦點;②與交不同兩點且滿足?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

在極坐標系中,圓ρ=-2sin θ的圓心的極坐標是(  )

A.B.C.(1,0)D.(1,π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

在極坐標系中,圓的垂直于極軸的兩條切線方程分別為(  )

A.()和=2
B.()和=2
C.()和=1
D.=0()和=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

在極坐標系中,點和圓的圓心的距離為(   )

A.B. 2 C.D.

查看答案和解析>>

同步練習冊答案