19.已知x1>0,x1≠1且xn+1=$\frac{{{x_n}(x_n^2+3)}}{3x_n^2+1}$(n=1,2,…).試證:“在數(shù)列{xn}中,對(duì)任意正整數(shù)n都滿(mǎn)足xn<xn+1”,當(dāng)此題用反證法證明,否定結(jié)論時(shí),應(yīng)為( 。
A.對(duì)任意的正整數(shù)n,有xn=xn+1B.存在正整數(shù)n,使xn=xn+1
C.存在正整數(shù)n,使xn≥xn+1D.存在正整數(shù)n,使xn-xn-1≥0

分析 根據(jù)全稱(chēng)命題的否定,是特稱(chēng)命題,求得“數(shù)列{xn}對(duì)任意的正整數(shù)n,都滿(mǎn)足xn<xn+1”的否定,即可得到答案.

解答 解:根據(jù)全稱(chēng)命題的否定,是特稱(chēng)命題,即“數(shù)列{xn}對(duì)任意的正整數(shù)n,都滿(mǎn)足xn<xn+1”的
否定為:“存在正整數(shù)n,使xn≥xn+1”,
故選C.

點(diǎn)評(píng) 本題主要考查求命題的否定,用反證法證明數(shù)學(xué)命題的方法和步驟,注意全稱(chēng)命題的否定,是特稱(chēng)命題,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知下列四個(gè)關(guān)系:
①a>b?ac2>bc2;
②a>b⇒$\frac{1}{a}$<$\frac{1}$;
③a>b>0,c>d⇒$\frac{a}faovlau$>$\frac{c}$;
④a>b>0⇒ac<bc
其中正確的有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知集合則A={x|2x2-3x-2≤0},B={-1,0,1,2,3},則A∩B=( 。
A.$[{-\frac{1}{2},2}]$B.{0,1,2}C.{-1,0,1,2}D.$[{-\frac{1}{2},3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.河南多地遭遇跨年霾,很多學(xué)校調(diào)整元旦放假時(shí)間,提前放假讓學(xué)生在家躲霾.鄭州市根據(jù)《鄭州市人民政府辦公廳關(guān)于將重污染天氣黃色預(yù)警升級(jí)為紅色預(yù)警的通知》,自12月29日12時(shí)將黃色預(yù)警升級(jí)為紅色預(yù)警,12月30日0時(shí)啟動(dòng)Ⅰ級(jí)響應(yīng),明確要求“幼兒園、中小學(xué)等教育機(jī)構(gòu)停課,停課不停學(xué)”.學(xué)生和家長(zhǎng)對(duì)這一舉措褒貶不一,有為了健康贊成的,有怕耽誤學(xué)習(xí)不贊成的,某調(diào)查機(jī)構(gòu)為了了解公眾對(duì)該舉措的態(tài)度,隨機(jī)調(diào)查采訪了50人,將調(diào)查情況匯總成表:
年齡(歲)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
頻數(shù)510151055
贊成人數(shù)469634
(1)請(qǐng)補(bǔ)全被調(diào)查人員年齡的頻率分布直方圖;
(2)若從年齡在[55,65),[65,75]的被調(diào)查者中分別隨機(jī)選取一人進(jìn)行追蹤調(diào)查,求這兩人都贊成“停課”這一舉措的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.某五國(guó)領(lǐng)導(dǎo)人A,B,C,D,E參加國(guó)際會(huì)議,除E與B,E與D不單獨(dú)會(huì)晤外,其他領(lǐng)導(dǎo)人兩兩之間都要單獨(dú)會(huì)晤,現(xiàn)安排他們?cè)趦商斓纳衔纭⑾挛鐔为?dú)會(huì)晤(每人每個(gè)半天最多進(jìn)行一次會(huì)晤),那么安排他們單獨(dú)會(huì)晤的不同方法共有(  )
A.48種B.36種C.24種D.8種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=x2-(2t+1)x+tlnx(t∈R)
(1)若t=1,求f(x)的極值;
(2)設(shè)函數(shù)g(x)=(1-t)x,若?x0∈[1,e],使得f(x0)≥g(x0)成立,求實(shí)數(shù)t的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.用數(shù)學(xué)歸納法證明等式1+2+3+…+(2n+1)=(n+1)(2n+1)時(shí),當(dāng)n=1時(shí)左邊表達(dá)式是,從k→k+1需要添的項(xiàng)是(2k+2)+(2k+3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知sinθ+cosθ=$\frac{1}{5}$,θ∈(0,π),求tanθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.質(zhì)點(diǎn)M的運(yùn)動(dòng)方程S=2t2-2為 則在時(shí)間段[2,2+△t]內(nèi)的平均速度為(  )
A.8+2△tB.4+2+△tC.7+2+△tD.-8+2+△t

查看答案和解析>>

同步練習(xí)冊(cè)答案