8.已知sinθ+cosθ=$\frac{1}{5}$,θ∈(0,π),求tanθ的值.

分析 利用同角三角函數(shù)的基本關(guān)系,以及三角函數(shù)在各個(gè)象限中的符號(hào),求得sinθ和cosθ的值,可得tanθ的值.

解答 解:∵sinθ+cosθ=$\frac{1}{5}$,θ∈(0,π),1+2sinθcosθ=$\frac{1}{25}$,∴sinθ=$\frac{4}{5}$,cosθ=-$\frac{3}{5}$,
∴tanθ=$\frac{sinθ}{cosθ}$=-$\frac{4}{3}$.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系,以及三角函數(shù)在各個(gè)象限中的符號(hào),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若z=$\frac{\sqrt{2}}{1-i}$,那么z100的值為(  )
A.1B.-1C.-iD.i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知x1>0,x1≠1且xn+1=$\frac{{{x_n}(x_n^2+3)}}{3x_n^2+1}$(n=1,2,…).試證:“在數(shù)列{xn}中,對(duì)任意正整數(shù)n都滿足xn<xn+1”,當(dāng)此題用反證法證明,否定結(jié)論時(shí),應(yīng)為( 。
A.對(duì)任意的正整數(shù)n,有xn=xn+1B.存在正整數(shù)n,使xn=xn+1
C.存在正整數(shù)n,使xn≥xn+1D.存在正整數(shù)n,使xn-xn-1≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若平面向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|,則$\overrightarrow{a}$與$\overrightarrow{a}$+$\overrightarrow$的夾角為(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.$\frac{cos(-585°)}{tan495°+sin(-690°)}$的值是$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知命題p:“?x∈R,使得x-2>lgx”,命題q:“?a∈R*,$\frac{x^2}{4}+\frac{y^2}{a}=1$表示橢圓”,則下列命題為真的是( 。
A.p∧qB.(¬p)∨qC.p∨(¬q)D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=x2-ax(a≠0),g(x)=lnx,f(x)圖象與x軸交于點(diǎn)M(M異于原點(diǎn)),f(x)在M處的切線為l1,g(x-1)圖象與x軸交于點(diǎn)N且在該點(diǎn)處的切線為l2,并且l1與l2平行.
(Ⅰ)求f(2)的值;
(Ⅱ)已知實(shí)數(shù)t∈R,求函數(shù)y=f[xg(x)+t],x∈[1,e]的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.為了讓學(xué)生了解環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某中學(xué)舉行了一次“環(huán)保知識(shí)競(jìng)賽”,共有900名學(xué)生參加了這次競(jìng)賽.為了解本次競(jìng)賽的成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì).請(qǐng)你根據(jù)尚未完成并有局部污損的頻率分布表和頻率分布直方圖(如圖所示),解答下列問(wèn)題:
分組頻數(shù)頻率
50.5~60.540.08
60.5~70.50.16
70.5~80.510
80.5~90.5160.32
90.5~100.5
合計(jì)50
(1)填充頻率分布表中的空格;
(2)補(bǔ)全頻率分布直方圖;
(3)若成績(jī)?cè)?0.5~90.5分的學(xué)生可以獲得二等獎(jiǎng),問(wèn)獲得二等獎(jiǎng)的學(xué)生約為多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知向量$\overrightarrow a=(1,2),|\overrightarrow b|=1$,且$\overrightarrow a$與$\overrightarrow b$的夾角為60°.
(1)求與$\overrightarrow a$垂直的單位向量的坐標(biāo);
(2)求向量$\overrightarrow b-2\overrightarrow a$在$\overrightarrow a$上的投影.

查看答案和解析>>

同步練習(xí)冊(cè)答案