【題目】某班主任為了對本班學生的月考成績進行分析,從全班40名同學中隨機抽取一個容量為6的樣本進行分析.隨機抽取6位同學的數(shù)學、物理分數(shù)對應如表:

學生編號

1

2

3

4

5

6

數(shù)學分數(shù)x

60

70

80

85

90

95

物理分數(shù)y

72

80

88

90

85

95

(1)根據(jù)上表數(shù)據(jù)用散點圖說明物理成績y與數(shù)學成績x之間是否具有線性相關(guān)性?

(2)如果具有線性相關(guān)性,求出線性回歸方程(系數(shù)精確到0.1);如果不具有線性相關(guān)性,請說明理由.

(3)如果班里的某位同學數(shù)學成績?yōu)?0,請預測這位同學的物理成績。

(附)

【答案】(1)見解析;(2) (3)67

【解析】

1)畫出散點圖,結(jié)合圖象判斷即可;

2)求出相關(guān)系數(shù),求出回歸方程即可;

3)代入x的值,求出y的預報值即可.

1)畫出散點圖:

通過圖象物理成績y與數(shù)學成績x之間具有線性相關(guān)性;

260+70+80+85+90+95)=80,

72+80+88+90+85+95)=85,

0.637,

故回歸方程是:y0.6x+37;

3x50時,解得:y67,

數(shù)學成績?yōu)?/span>50,預測這位同學的物理成績是67

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】我國古代名著《莊子·天下篇》中有一句名言“一尺之棰,日取其半,萬世不竭”,其意思為:一尺的木棍,每天截取一半,永遠都截不完.現(xiàn)將該木棍依此規(guī)律截取,如圖所示的程序框圖的功能就是計算截取7天后所剩木棍的長度(單位:尺),則①②③處可分別填入的是

A. A B. B C. C D. D

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個盒子中裝有6個完全相同的小球,分別標號為1,2,3,4,5,6.

1)一次取出兩個小球,求其號碼之和能被3整除的概率;

2)有放回的取球兩次,每次取一個,求兩個小球號碼是相鄰整數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知極坐標系的極點與直角坐標系的原點重合,極軸與直角坐標系中軸的正半軸重合.若曲線的參數(shù)方程為為參數(shù)),直線的極坐標方程為.

(1)將曲線的參數(shù)方程化為極坐標方程;

(2)由直線上一點向曲線引切線,求切線長的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中,側(cè)面是菱形,其對角線的交點為,且, .

⑴ 求證: 平面;

(2)設(shè),若三棱錐的體積為1,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】唐三彩,中國古代陶瓷燒制工藝的珍品,它吸取了中國國畫、雕塑等工藝美術(shù)的特點,在中國文化中占有重要的歷史地位,在陶瓷史上留下了濃墨重彩的一筆.唐三彩的生產(chǎn)至今已有1300多年的歷史,制作工藝十分復雜,它的制作過程必須先后經(jīng)過兩次燒制,當?shù)谝淮螣坪细窈蠓娇蛇M入第二次燒制,兩次燒制過程相互獨立。某陶瓷廠準備仿制甲、乙、丙三件不同的唐三彩工藝品,根據(jù)該廠全面治污后的技術(shù)水平,經(jīng)過第一次燒制后,甲、乙、丙三件工藝品合格的概率依次為, , ,經(jīng)過第二次燒制后,甲、乙、丙三件工藝品合格的概率依次為, , .

(1)求第一次燒制后甲、乙、丙三件中恰有一件工藝品合格的概率;

(2)經(jīng)過前后兩次燒制后,甲、乙、丙三件工藝品成為合格工藝品的件數(shù)為,求隨機變量的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在空間中,下列命題正確的是

A.如果一個角的兩邊和另一角的兩邊分別平行,那么這兩個角相等

B.兩條異面直線所成的有的范圍是

C.如果兩個平行平面同時與第三個平面相交,那么它們的交線平行

D.如果一條直線和平面內(nèi)的一條直線平行,那么這條直線和這個平面平行

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過拋物線y2=4x的焦點F的弦長為36,求弦所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,內(nèi)角、所對的邊分別是、、,不等式對一切實數(shù)恒成立.

1)求的取值范圍;

2)當取最大值,且的周長為時,求面積的最大值,并指出面積取最大值時的形狀.(參考知識:已知、,;、,

查看答案和解析>>

同步練習冊答案