【題目】設(shè)f(x)=|x+1|+|x﹣1|.
(1)求f(x)≤x+2的解集;
(2)若不等式f(x)≤log2(a2﹣4a+12)對(duì)任意實(shí)數(shù)a恒成立,求x的取值范圍.

【答案】
(1)解:由f(x)≤x+2得|x+1|+|x﹣1|≤x+2

解得0≤x≤2

∴f(x)≤x+2的解集為{x|0≤x≤2}


(2)解:∵a2﹣4a+12=(a﹣2)2+8≥8,∴

恒成立等價(jià)于f(x)≤3

即|x+1|+|x﹣1|≤3,易得

∴x的范圍是


【解析】(1)由零點(diǎn)分段法進(jìn)行分類討論,可以解得f(x)≤x+2的解集;(2)將不等式f(x)≤log2(a2﹣4a+12)對(duì)任意實(shí)數(shù)a恒成立的條件轉(zhuǎn)化為f(x)≤3,代入即可得出a的取值范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知中心在原點(diǎn),離心率為的橢圓的一個(gè)焦點(diǎn)為圓 的圓心.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)是橢圓上一點(diǎn),過作兩條斜率之積為的直線, ,當(dāng)直線 都與圓相切時(shí),求的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國的煙花名目繁多,花色品種繁雜.其中“菊花”煙花是最壯觀的煙花之一,制造時(shí)一般是期望在它達(dá)到最高點(diǎn)時(shí)爆裂,通過研究,發(fā)現(xiàn)該型煙花爆裂時(shí)距地面的高度h(單位:米)與時(shí)間t(單位:秒)存在函數(shù)關(guān)系,并得到相關(guān)數(shù)據(jù)如下表:

時(shí)間t

2

4

高度h

10

25

17

( I)根據(jù)上表數(shù)據(jù),從下列函數(shù)中,選取一個(gè)函數(shù)描述該型煙花爆裂時(shí)距地面的高度h與時(shí)間t的變化關(guān)系:y1=kt+b,y2=at2+bt+c,y3=abt , 確定此函數(shù)解析式,并簡單說明理由;
( II)利用你選取的函數(shù),判斷煙花爆裂的最佳時(shí)刻,并求出此時(shí)煙花距地面的高度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩家快遞公司其“快遞小哥”的日工資方案如下:甲公司規(guī)定底薪元,每單抽成元;乙公司規(guī)定底薪元,每日前單無抽成,超過單的部分每單抽成

(1)設(shè)甲乙快遞公司的“快遞小哥”一日工資(單位:元)與送貨單數(shù)的函數(shù)關(guān)系式為,求

(2)假設(shè)同一公司的“快遞小哥”一日送貨單數(shù)相同,現(xiàn)從兩家公司各隨機(jī)抽取一名“快遞小哥”,并記錄其天的送貨單數(shù),得到如下條形圖:

若將頻率視為概率,回答下列問題:

①記乙快遞公司的“快遞小哥”日工資為(單位:元),求的分布列和數(shù)學(xué)期望;

②小趙擬到兩家公司中的一家應(yīng)聘“快遞小哥”的工作,如果僅從日收入的角度考慮,請(qǐng)你利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為他作出選擇,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程為,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為的正半軸,建立平面直角坐標(biāo)系.

(1)若曲線為參數(shù))與曲線相交于兩點(diǎn),求;

(2)若是曲線上的動(dòng)點(diǎn),且點(diǎn)的直角坐標(biāo)為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】五一節(jié)期間,某商場(chǎng)為吸引顧客消費(fèi)推出一項(xiàng)優(yōu)惠活動(dòng),活動(dòng)規(guī)則如下:消費(fèi)額每滿100元可轉(zhuǎn)動(dòng)如圖所示的轉(zhuǎn)盤一次,并獲得相應(yīng)金額的返券.(假定指針等可能地停在任一位置,指針落在區(qū)域的邊界時(shí),重新轉(zhuǎn)一次)指針?biāo)诘膮^(qū)域及對(duì)應(yīng)的返劵金額見表.
例如:消費(fèi)218元,可轉(zhuǎn)動(dòng)轉(zhuǎn)盤2次,所獲得的返券金額是兩次金額之和.

(1)已知顧客甲消費(fèi)后獲得n次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì),已知他每轉(zhuǎn)一次轉(zhuǎn)盤指針落在區(qū)域邊界的概率為p,每次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的結(jié)果相互獨(dú)立,設(shè)ξ為顧客甲轉(zhuǎn)動(dòng)轉(zhuǎn)盤指針落在區(qū)域邊界的次數(shù),ξ的數(shù)學(xué)期望Eξ= ,方差Dξ= ,求n、p的值;
(2)顧客乙消費(fèi)280元,并按規(guī)則參與了活動(dòng),他獲得返券的金額記為η(元).求隨機(jī)變量η的分布列和數(shù)學(xué)期望.

指針位置

A區(qū)域

B區(qū)域

C區(qū)域

返券金額(單位:元)

60

30

0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有能力互異的3人應(yīng)聘同一公司,他們按照?qǐng)?bào)名順序依次接受面試,經(jīng)理決定“不錄用第一個(gè)接受面試的人,如果第二個(gè)接受面試的人比第一個(gè)能力強(qiáng),就錄用第二個(gè)人,否則就錄用第三個(gè)人”,記該公司錄用到能力最強(qiáng)的人的概率為p,錄用到能力中等的人的概率為q,則(p,q)=(
A.(
B.( ,
C.(
D.( ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2﹣a2x+3.
(1)若a=2,求f(x)在[﹣1,2]上的最值;
(2)若f(x)在(﹣ ,1)上是減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的長軸長為,且橢圓與圓 的公共弦長為.

(1)求橢圓的方程.

(2)經(jīng)過原點(diǎn)作直線(不與坐標(biāo)軸重合)交橢圓于 兩點(diǎn), 軸于點(diǎn),點(diǎn)在橢圓上,且,求證: , 三點(diǎn)共線..

查看答案和解析>>

同步練習(xí)冊(cè)答案