【題目】已知數(shù)列滿足, ,其中, , 為非零常數(shù).
(1)若, ,求證: 為等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列是公差不等于零的等差數(shù)列.
①求實(shí)數(shù), 的值;
②數(shù)列的前項(xiàng)和構(gòu)成數(shù)列,從中取不同的四項(xiàng)按從小到大排列組成四項(xiàng)子數(shù)列.試問:是否存在首項(xiàng)為的四項(xiàng)子數(shù)列,使得該子數(shù)列中的所有項(xiàng)之和恰好為2017?若存在,求出所有滿足條件的四項(xiàng)子數(shù)列;若不存在,請(qǐng)說明理由.
【答案】(1)(2)①, , .②, ,
【解析】試題分析:(1)利用等比數(shù)列定義證明,即尋找與比例關(guān)系:利用 代入化簡(jiǎn)可得.最后說明各項(xiàng)非零.(2)①令,2,3,根據(jù)等差數(shù)列性質(zhì)得 ,列出關(guān)于, 的二元一次方程組,解得, 的值;再驗(yàn)證滿足題意. ②先求數(shù)列的前項(xiàng)和,再討論四項(xiàng)奇偶性:三個(gè)奇數(shù)一個(gè)偶數(shù)、或者一個(gè)奇數(shù)三個(gè)偶數(shù).將奇偶性代入化簡(jiǎn)討論,直至確定.
試題解析:解:(1)當(dāng), 時(shí), ,
.
又,不然,這與矛盾,
為2為首項(xiàng),3為公比的等比數(shù)列,
, .
(2)①設(shè) ,
由得 ,
,
對(duì)任意恒成立.
令,2,3,解得, , , .
經(jīng)檢驗(yàn),滿足題意.
綜上, , , .
②由①知.
設(shè)存在這樣滿足條件的四元子列,觀察到2017為奇數(shù),這四項(xiàng)或者三個(gè)奇數(shù)一個(gè)偶數(shù)、或者一個(gè)奇數(shù)三個(gè)偶數(shù).
1°若三個(gè)奇數(shù)一個(gè)偶數(shù),設(shè), , , 是滿足條件的四項(xiàng),
則 ,
,這與1007為奇數(shù)矛盾,不合題意舍去.
2°若一個(gè)奇數(shù)三個(gè)偶數(shù),設(shè), , , 是滿足條件的四項(xiàng),
則 , .
由504為偶數(shù)知, , , 中一個(gè)偶數(shù)兩個(gè)奇數(shù)或者三個(gè)偶數(shù).
1)若, , 中一個(gè)偶數(shù)兩個(gè)奇數(shù),不妨設(shè), , ,
則 ,這與251為奇數(shù)矛盾.
2)若, , 均為偶數(shù),不妨設(shè), , ,
則,繼續(xù)奇偶分析知, , 中兩奇數(shù)一個(gè)偶數(shù),
不妨設(shè), , ,則 .
因?yàn)?/span>, 均為偶數(shù),所以為奇數(shù),不妨設(shè),
當(dāng)時(shí), , ,檢驗(yàn)得, , ,
當(dāng)時(shí), , ,檢驗(yàn)得, , ,
當(dāng)時(shí), , ,檢驗(yàn)得, , ,
即, , , 或者, , , 或者, , , 滿足條件,
綜上所述, , , 為全部滿足條件的四元子列.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(1)證明: ,直線都不是曲線的切線;
(2)若,使成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(Ⅰ)在區(qū)間上的極小值等于,求;
(Ⅱ)令, .曲線與交于, 兩點(diǎn),求證: 在中點(diǎn)處的切線斜率大于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(1)曲線在點(diǎn)處的切線平行于軸,求實(shí)數(shù)的值;
(2)記.
(i)討論的單調(diào)性;
(ii)若, 為在上的最小值,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中點(diǎn)在原點(diǎn),焦點(diǎn)在軸上,離心率,以兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)為頂點(diǎn)的四邊形的周長(zhǎng)為8,面積為.
(1)求橢圓的方程;
(2)過原點(diǎn)的兩條直線, ,交橢圓于, , , 四點(diǎn),若,求四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上各點(diǎn)的橫坐標(biāo)都縮短為原來(lái)的倍,縱坐標(biāo)坐標(biāo)都伸長(zhǎng)為原來(lái)的倍,得到曲線,在極坐標(biāo)系(與直角坐標(biāo)系取相同的單位長(zhǎng)度,且以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸)中,直線的極坐標(biāo)方程為.
(1)求直線和曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)是曲線上的一個(gè)動(dòng)點(diǎn),求它到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上各點(diǎn)的橫坐標(biāo)都縮短為原來(lái)的倍,縱坐標(biāo)坐標(biāo)都伸長(zhǎng)為原來(lái)的倍,得到曲線,在極坐標(biāo)系(與直角坐標(biāo)系取相同的單位長(zhǎng)度,且以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸)中,直線的極坐標(biāo)方程為.
(1)求直線和曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)是曲線上的一個(gè)動(dòng)點(diǎn),求它到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說法中正確的是( )
A. 設(shè)隨機(jī)變量,則
B. 線性回歸直線不一定過樣本中心點(diǎn)
C. 若兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的值越接近于1
D. 先把高三年級(jí)的2000名學(xué)生編號(hào):1到2000,再?gòu)木幪?hào)為1到50的50名學(xué)生中隨機(jī)抽取1名學(xué)生,其編號(hào)為,然后抽取編號(hào)為, , ,……的學(xué)生,這樣的抽樣方法是分層抽樣
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), ,且曲線在處的切線方程為.
(1)求, 的值;
(2)求函數(shù)在上的最小值;
(3)證明:當(dāng)時(shí), .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com