【題目】已知函數(shù),

(1)曲線在點(diǎn)處的切線平行于軸,求實(shí)數(shù)的值;

(2)記

(i)討論的單調(diào)性;

(ii)若 上的最小值,求證:

【答案】(1);(2)(i)①若, , 單調(diào)遞增;②若,當(dāng)時(shí), ;當(dāng)時(shí), ;所以單調(diào)遞減,在 單調(diào)遞增;(ii)見解析.

【解析】試題分析:(1先求得, ,處的切線平行于軸,得,從而可得實(shí)數(shù)的值;(2)(i求出分兩種情況討論的范圍,分別令求得的范圍,可得函數(shù)增區(qū)間, 求得的范圍,可得函數(shù)的減區(qū)間;(ii, 單調(diào)遞減,在單調(diào)遞增. ,令,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,只需證明的最大值小于零即可.

試題解析:(1) ,

因?yàn)?/span>處的切線平行于軸,所以,所以;

(2)

(i) ,

,即時(shí),則由,當(dāng)時(shí), ;

當(dāng)時(shí),

所以單調(diào)遞減,在單調(diào)遞增.

,則由,得,構(gòu)造函數(shù)),

,由,得,

所以單調(diào)遞減,在單調(diào)遞增,

所以(當(dāng)且僅當(dāng)時(shí)等號(hào)成立).

①若, , 單調(diào)遞增;

②若,

當(dāng)時(shí), ;當(dāng)時(shí), ;

所以單調(diào)遞減,在, 單調(diào)遞增.

(ii)若, 單調(diào)遞減,在單調(diào)遞增.

,令,則,

, , 單調(diào)遞減,

,所以存在唯一的使得

所以單調(diào)遞增,在單調(diào)遞減,故當(dāng)時(shí),

,所以

所以當(dāng)時(shí),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在棱長(zhǎng)為1的正方體ABCDA1B1C1D1中,點(diǎn)P在線段AD1上運(yùn)動(dòng),給出以下命題:

①異面直線C1PB1C所成的角為定值;

②二面角PBC1D的大小為定值;

③三棱錐DBPC1的體積為定值;

④異面直線A1PBC1間的距離為定值.

其中真命題的個(gè)數(shù)為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若橢圓C1 和橢圓C2 的焦點(diǎn)相同且a1>a2.給出如下四個(gè)結(jié)論:

①橢圓C1和橢圓C2一定沒有公共點(diǎn);

;

;

a1a2<b1b2.

其中,所有正確結(jié)論的序號(hào)是(  )

A. ②③④ B. ①③④

C. ①②④ D. ①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若向量與向量的夾角為鈍角, ,且當(dāng)時(shí), ()取最小值,向量滿足 ,則當(dāng) 取最大值時(shí), 等于(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=a(x-lnx)+,a∈R.

(I)討論f(x)的單調(diào)性;

(II)當(dāng)a=1時(shí),證明f(x)>f’(x)+對(duì)于任意的x∈[1,2] 恒成立。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

已知極坐標(biāo)系的極點(diǎn)在直角坐標(biāo)系的原點(diǎn)處,極軸與軸的非負(fù)半軸重合,直線的參數(shù)方程為為參數(shù)),曲線的極坐標(biāo)方程為.

(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

(2)設(shè), 分別是直線與曲線上的點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足 ,其中 , 為非零常數(shù).

(1)若, ,求證: 為等比數(shù)列,并求數(shù)列的通項(xiàng)公式;

(2)若數(shù)列是公差不等于零的等差數(shù)列.

①求實(shí)數(shù) 的值;

②數(shù)列的前項(xiàng)和構(gòu)成數(shù)列,從中取不同的四項(xiàng)按從小到大排列組成四項(xiàng)子數(shù)列.試問:是否存在首項(xiàng)為的四項(xiàng)子數(shù)列,使得該子數(shù)列中的所有項(xiàng)之和恰好為2017?若存在,求出所有滿足條件的四項(xiàng)子數(shù)列;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市縣鄉(xiāng)教師流失現(xiàn)象非常嚴(yán)重,為了縣鄉(xiāng)孩子們能接受良好教育,某市今年要為兩所縣鄉(xiāng)中學(xué)招聘儲(chǔ)備未來(lái)三年的教師,已知現(xiàn)在該市縣鄉(xiāng)中學(xué)無(wú)多余教師,為決策應(yīng)招聘多少縣鄉(xiāng)教師搜集并整理了該市50所縣鄉(xiāng)中學(xué)在過(guò)去三年內(nèi)的教師流失數(shù),得到如表的頻率分布表:以這50所縣鄉(xiāng)中學(xué)流失教師數(shù)的頻率代替一所縣鄉(xiāng)中學(xué)流失教師數(shù)發(fā)生的概率.

(1)求該市所有縣鄉(xiāng)中學(xué)教師流失數(shù)不低于8的概率;

(2)若從上述50所縣鄉(xiāng)中學(xué)中流失教師數(shù)不低于9的縣鄉(xiāng)學(xué)校中任取兩所調(diào)查回訪,了解其中原因,求這兩所學(xué)校的教師流失數(shù)都是10的概率.

流失教師數(shù)

4

5

6

7

8

9

10

頻數(shù)

2

4

11

16

12

3

2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列的首項(xiàng)為,前項(xiàng)和為,若對(duì)任意的,均有是常數(shù)且)成立,則稱數(shù)列為“數(shù)列”.

(1)若數(shù)列為“數(shù)列”,求數(shù)列的通項(xiàng)公式;

(2)是否存在數(shù)列既是“數(shù)列”,也是“數(shù)列”?若存在,求出符合條件的數(shù)列的通項(xiàng)公式及對(duì)應(yīng)的的值;若不存在,請(qǐng)說(shuō)明理由;

(3)若數(shù)列為“數(shù)列”, ,設(shè),證明: .

查看答案和解析>>

同步練習(xí)冊(cè)答案