【題目】如圖,在棱長為1的正方體ABCD-A1B1C1D1中,點(diǎn)P在線段AD1上運(yùn)動,給出以下命題:
①異面直線C1P與B1C所成的角為定值;
②二面角P-BC1-D的大小為定值;
③三棱錐D-BPC1的體積為定值;
④異面直線A1P與BC1間的距離為定值.
其中真命題的個數(shù)為________.
【答案】4
【解析】對于①,因?yàn)樵诶忾L為1的正方體ABCD-A1B1C1D1中,點(diǎn)P在線段AD1上運(yùn)動,
在正方體中有B1C⊥平面ABC1D1,而C1P平面ABC1D1,所以B1C⊥C1P,
所以這兩個異面直線所成的角為定值90°,故①正確;
對于②,因?yàn)槎娼?/span>P-BC1-D為平面ABC1D1與平面BDC1所成的二面角,
而這兩個平面為固定不變的平面,
所以夾角也為定值,故②正確;
對于③,三棱錐D-BPC1的體積還等于三棱錐P-DBC1的體積,
而△DBC1面積一定,
又因?yàn)?/span>P∈AD1,而AD1∥平面BDC1,
所以點(diǎn)A到平面BDC1的距離即為點(diǎn)P到該平面的距離,
所以三棱錐的體積為定值,故③正確;
對于④,因?yàn)橹本A1P和BC1分別位于平面ADD1A1,
平面BCC1B1中,且這兩個平面平行,
由異面直線間的距離定義及求法,
知這兩個平面間的距離即為所求的異面直線間的距離,
所以這兩個異面直線間的距離為定值,故④正確.
綜上知,真命題的個數(shù)為4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果函數(shù)y=f(x)的導(dǎo)函數(shù)的圖象如圖所示,給出下列判斷:
①函數(shù)y=f(x)在區(qū)間內(nèi)單調(diào)遞增;
②函數(shù)y=f(x)在區(qū)間內(nèi)單調(diào)遞減;
③函數(shù)y=f(x)在區(qū)間(4,5)內(nèi)單調(diào)遞增;
④當(dāng)x=2時,函數(shù)y=f(x)有極小值;
⑤當(dāng)x=時,函數(shù)y=f(x)有極大值.
則上述判斷中正確的是( )
A. ①② B. ②③
C. ③④⑤ D. ③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正四棱錐中,已知異面直線與所成的角為,給出下面三個命題:
:若,則此四棱錐的側(cè)面積為;
:若分別為的中點(diǎn),則平面;
:若都在球的表面上,則球的表面積是四邊形面積的倍.
在下列命題中,為真命題的是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在[-1,1]上的奇函數(shù),在[0,1]上f(x)=2x+ln(x+1)-1.
(1)求函數(shù)f(x)的解析式;并判斷f(x)在[-1,1]上的單調(diào)性(不要求證明);
(2)解不等式f(2x-1)+f(1-x2)≥0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= (其中e是自然對數(shù)的底數(shù),常數(shù)a>0).
(1)當(dāng)a=1時,求曲線在(0,f(0))處的切線方程;
(2)若存在實(shí)數(shù)x∈(a,2],使得不等式f(x)≤e2成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD為∠ACB的平分線,點(diǎn)E在線段AC上,CE=4,將△BCD沿CD折起,使得平面BCD⊥平面ACD,連接AB,BE,如圖②所示,設(shè)點(diǎn)F是AB的中點(diǎn).
(1)求證:DE⊥平面BCD;
(2)若EF∥平面BDG,其中G為AC上一點(diǎn),求三棱錐B-DEG的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), (為自然對數(shù)的底數(shù)).
(Ⅰ)當(dāng)時,求函數(shù)在點(diǎn)處的切線方程;
(Ⅱ)若函數(shù)有兩個零點(diǎn),試求的取值范圍;
(Ⅲ)當(dāng)時, 恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)曲線在點(diǎn)處的切線平行于軸,求實(shí)數(shù)的值;
(2)記.
(i)討論的單調(diào)性;
(ii)若, 為在上的最小值,求證: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com