【題目】如圖,已知直四棱柱的底面是直角梯形,,,、分別是棱、上的動點,且,,,.
(1)證明:無論點怎樣運動,四邊形都為矩形;
(2)當時,求幾何體的體積.
【答案】(1)證明見解析;(2).
【解析】
(1)利用面面平行的性質(zhì)定理得出,由面面平行的性質(zhì)定理可得出,可證明出四邊形為平行四邊形,由平面,可得出,從而可證明出四邊形為矩形;
(2)計算出梯形的面積和的面積,將梯形的面積減去的面積可得出四邊形的面積,再利用柱體的體積公式可求出幾何體的體積.
(1)在直四棱柱中,,平面,平面,平面,
平面,平面平面,.
在直四棱柱中,平面平面,平面平面,平面平面,,則四邊形為平行四邊形,
在直四棱柱中,平面,平面,,
因此,無論點怎樣運動,四邊形都為矩形;
(2)由于四邊形是直角梯形,且,,,,,
所以,梯形的面積為,
,易得,的面積為,
四邊形的面積為,
由題意可知,幾何體為直四棱柱,且高為,
因此,幾何體的體積為.
科目:高中數(shù)學 來源: 題型:
【題目】已知某人做某件事,成功的概率只有0.1.用計算器計算,如果他嘗試10次,而且每次是否成功都相互獨立,則他至少有一次成功的概率為多少(精確到0.01)?如果他嘗試20次呢?如果要保證至少成功一次的概率不小于90%,則他至少要嘗試多少次?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國古代儒家要求學生掌握六種基本才藝:禮、樂、射、御、書、數(shù),簡稱“六藝”,某高中學校為弘揚“六藝”的傳統(tǒng)文化,分別進行了主題為“禮、樂、射、御、書、數(shù)”六場傳統(tǒng)文化知識競賽,現(xiàn)有甲、乙、丙三位選手進入了前三名的最后角逐,規(guī)定:每場知識競賽前三名的得分都分別為且;選手最后得分為各場得分之和,在六場比賽后,已知甲最后得分為分,乙和丙最后得分都是分,且乙在其中一場比賽中獲得第一名,下列說法正確的是( )
A. 乙有四場比賽獲得第三名
B. 每場比賽第一名得分為
C. 甲可能有一場比賽獲得第二名
D. 丙可能有一場比賽獲得第一名
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)單調(diào)遞增,函數(shù)的圖像關于點對稱,實數(shù)滿足不等式,則的最小值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了鼓勵節(jié)約用電,遼寧省實行階梯電價制度,其中每戶的用電單價與戶年用電量的關系如下表所示.
分檔 | 戶年用電量(度) | 用電單價(元/度) |
第一階梯 | 0.5 | |
第二階梯 | 0.55 | |
第三階梯 | 0.80 |
記用戶年用電量為度時應繳納的電費為元.
(1)寫出的解析式;
(2)假設居住在沈陽的范偉一家2018年共用電3000度,則范偉一家2018年應繳納電費多少元?
(3)居住在大連的張莉一家在2018年共繳納電費1942元,則張莉一家在2018年用了多少度電?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,平行四邊形OABC,頂點O,A,C分別表示0,3+2i,-2+4i,試求:
(1) 所表示的復數(shù);
(2)對角線所表示的復數(shù);
(3)B點對應的復數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,圓的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)).
(1)若直線與圓相交于,兩點,求弦長,若點,求的值;
(2)以該直角坐標系的原點為極點,軸的非負半軸為極軸建立極坐標系,圓的極坐標方程為,圓和圓的交點為,,求弦所在直線的直角坐標方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com