一梯形的直觀圖是一個(gè)如圖所示的等腰梯形,且該梯形的面積為2,則該梯形的面積為
 
考點(diǎn):平面圖形的直觀圖
專題:空間位置關(guān)系與距離
分析:把該梯形的直觀圖還原為原來的梯形,畫出圖形,結(jié)合圖形解答問題即可.
解答: 解:把該梯形的直觀圖還原為原來的梯形,如圖所示;
設(shè)該梯形的上底為a,下底為b,高為h,
則直觀圖中等腰梯形的高為h′=
1
2
hsin45°;
∵等腰梯形的體積為
1
2
(a+b)h′=
1
2
(a+b)•
1
2
hsin45°=2,
1
2
(a+b)•h=
2
1
2
•sin45°
=4
2
;
∴該梯形的面積為4
2

故答案為:4
2
點(diǎn)評:本題考查了平面圖形的直觀圖的畫法與應(yīng)用問題,解題時(shí)應(yīng)明確直觀圖與原來圖形的區(qū)別和聯(lián)系,是基礎(chǔ)題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,已知a1=
1
3
,a2+a5=4,an=31,則n為( 。
A、50B、49C、48D、47

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合U={-1,0,1,2},M={x|x2=x},則∁UM=( 。
A、{-1,2}
B、{-1,0,2}
C、{2}
D、{0,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)(0,1)的直線與拋物線y2=4x僅有一個(gè)公共點(diǎn),則滿足條件的直線共有( 。l.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A在曲線P:y=x2(x>0)上,⊙A過原點(diǎn)O,且與y軸的另一個(gè)交點(diǎn)為M.若線段OM,⊙A和曲線P上分別存在點(diǎn)B、點(diǎn)C和點(diǎn)D,使得四邊形ABCD(點(diǎn)A,B,C,D順時(shí)針排列)是正方形,則稱點(diǎn)A為曲線P的“完美點(diǎn)”.那么下列結(jié)論中正確的是( 。
A、曲線P上不存在“完美點(diǎn)”
B、曲線P上只存在一個(gè)“完美點(diǎn)”,其橫坐標(biāo)大于1
C、曲線P上只存在一個(gè)“完美點(diǎn)”,其橫坐標(biāo)大于
1
2
且小于1
D、曲線P上存在兩個(gè)“完美點(diǎn)”,其橫坐標(biāo)均大于
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下給出一個(gè)算法的程序框圖(如圖所示),根據(jù)該程序框圖回答問題.
(1)若輸入的四個(gè)數(shù)是5,3,8,12,則最后輸出的結(jié)果是什么?
(2)該算法是為什么問題而設(shè)計(jì)的?寫出算法的步驟.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+x-ln(x+a)+3b在x=0處取得極值0.
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)若關(guān)于x的方程f(x)=
5
2
x+m在區(qū)間[0,2]上恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O為坐標(biāo)原點(diǎn),F(xiàn)為拋物線C:y2=4
3
x的焦點(diǎn),P是C上一點(diǎn),若|PF|=3
3
,則△OPF的面積為(  )
A、2
3
B、3
2
C、3
3
D、6
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1的離心率為2,焦點(diǎn)與橢圓
x2
25
+
y2
9
=1的焦點(diǎn)相同,求雙曲線的方程及焦點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案