【題目】設(shè)函數(shù)的導(dǎo)函數(shù)為.若不等式對任意實數(shù)x恒成立,則稱函數(shù)是“超導(dǎo)函數(shù)”.
(1)請舉一個“超導(dǎo)函數(shù)” 的例子,并加以證明;
(2)若函數(shù)與都是“超導(dǎo)函數(shù)”,且其中一個在R上單調(diào)遞增,另一個在R上單調(diào)遞減,求證:函數(shù)是“超導(dǎo)函數(shù)”;
(3)若函數(shù)是“超導(dǎo)函數(shù)”且方程無實根,(e為自然對數(shù)的底數(shù)),判斷方程的實數(shù)根的個數(shù)并說明理由.
【答案】(1)見解析.
(2)見解析.
(3)見解析.
【解析】分析:(1)根據(jù)定義舉任何常數(shù)都可以;(2)∵,∴,即證-在R上成立即可;(3)構(gòu)造函數(shù),因為是“超導(dǎo)函數(shù)”, ∴對任意實數(shù)恒成立,而方程無實根,故恒成立,所以在上單調(diào)遞減, 故方程等價于,即,
設(shè) ,分析函數(shù)單調(diào)性結(jié)合零點(diǎn)定理即可得出結(jié)論.
詳解:
(1)舉例:函數(shù)是“超導(dǎo)函數(shù)”,
因為,,滿足對任意實數(shù)恒成立,故是“超導(dǎo)函數(shù)”.
注:答案不唯一,必須有證明過程才能給分,無證明過程的不給分.
(2)∵,∴,
∴
因為函數(shù)與都是“超導(dǎo)函數(shù)”,所以不等式與對任意實數(shù)都恒成立,故,,①
而與一個在上單調(diào)遞增,另一個在上單調(diào)遞減,故,②
由①②得對任意實數(shù)都恒成立,所以函數(shù)是“超導(dǎo)函數(shù)”.
(3)∵,所以方程可化為,
設(shè)函數(shù),,則原方程即為,③
因為是“超導(dǎo)函數(shù)”, ∴對任意實數(shù)成立,
而方程無實根,故恒成立,所以在上單調(diào)遞減,
故方程③等價于,即,
設(shè) ,,則在上恒成立,
故在上單調(diào)遞增,
而,,且函數(shù)的圖象在上連續(xù)不斷,
故 在上有且僅有一個零點(diǎn),從而原方程有且僅有唯一實數(shù)根.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項數(shù)列{an} 為等比數(shù)列,等差數(shù)列{bn} 的前n 項和為Sn (n∈N* ),且滿足:S13=208,S9﹣S7=41,a1=b2,a3=b3.
(1)求數(shù)列{an},{bn} 的通項公式;
(2)設(shè)Tn=a1b1+a2b2+…+anbn (n∈N* ),求Tn;
(3)設(shè),是否存在正整數(shù)m,使得cm·cm+1·cm+2+8=3(cm+cm+1+cm+2).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(,為參數(shù)),在以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線是圓心在極軸上,且經(jīng)過極點(diǎn)的圓.已知曲線上的點(diǎn)對應(yīng)的參數(shù),射線與曲線交于點(diǎn).
(Ⅰ)求曲線,的標(biāo)準(zhǔn)方程;
(Ⅱ)若點(diǎn),在曲線上,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年時紅軍長征勝利80周年,某市電視臺舉辦紀(jì)念紅軍長征勝利80周年知識問答,宣傳長征精神.首先在甲、乙、丙、丁四個不同的公園進(jìn)行支持簽名活動,其次在各公園簽名的人中按分層抽樣的方式抽取10名幸運(yùn)之星,每人獲得一個紀(jì)念品,其數(shù)據(jù)表格如下:
(Ⅰ)求此活動中各公園幸運(yùn)之星的人數(shù);
(Ⅱ)從乙和丙公園的幸運(yùn)之星中任選兩人接受電視臺記者的采訪,求這兩人均來自乙公園的概率;
(Ⅲ)電視臺記者對乙公園的簽名人進(jìn)行了是否有興趣研究“紅軍長征”歷史的問卷調(diào)查,統(tǒng)計結(jié)果如下(單位:人):
據(jù)此判斷能否在犯錯誤的概率不超過0.01的前提下認(rèn)為有興趣研究“紅軍長征”歷史與性別有關(guān).
附臨界值表及公式: ,其中
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直角坐標(biāo)系xoy中,橢圓的離心率為,過點(diǎn).
(1)求橢圓C的方程;
(2)已知點(diǎn)P(2,1),直線與橢圓C相交于A,B兩點(diǎn),且線段AB被直線OP平分.
①求直線的斜率;②若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了鞏固全國文明城市創(chuàng)建成果,今年吉安市開展了拆除違章搭建鐵皮棚專項整治行為.為了了解市民對此項工作的“支持”與“反對”態(tài)度,隨機(jī)從存在違章搭建的戶主中抽取了男性、女性共名進(jìn)行調(diào)查,調(diào)查結(jié)果如下:
支持 | 反對 | 合計 | |
男性 | |||
女性 | |||
合計 |
(1)根據(jù)以上數(shù)據(jù),判斷是否有的把握認(rèn)為對此項工作的“支持”與“反對”態(tài)度與“性別”有關(guān);
(2)現(xiàn)從參與調(diào)查的女戶主中按分層抽樣的方法抽取人進(jìn)行調(diào)查,分別求出所抽取的人中持“支持”和“反對”態(tài)度的人數(shù);
(3)現(xiàn)從(2)中所抽取的人中,再隨機(jī)抽取人贈送小品,求恰好抽到人持“支持”態(tài)度的概率?
參考公式:,其中.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中t∈R.
(1)當(dāng)t=1時,求曲線在點(diǎn)處的切線方程;
(2)當(dāng)t≠0時,求的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)分別是橢圓C:的左、右焦點(diǎn),過點(diǎn)作軸的垂線,交橢圓的上半部分于點(diǎn),過點(diǎn)作的垂線交直線于點(diǎn).
(1)如果點(diǎn)的坐標(biāo)為(4,4),求橢圓的方程;
(2)試判斷直線與橢圓的公共點(diǎn)個數(shù),并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C1:y=cos x,C2:y=sin (2x+),則下面結(jié)論正確的是( )
A. 把C1上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線C2
B. 把C1上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個單位長度,得到曲線C2
C. 把C1上各點(diǎn)的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線C2
D. 把C1上各點(diǎn)的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個單位長度,得到曲線C2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com