分析 (Ⅰ)利用降次公式和兩角和與差的公式化簡(jiǎn),化為y=Asin(ωx+φ)的形式,再利用周期公式求函數(shù)的最小正周期,
(Ⅱ)最后將內(nèi)層函數(shù)看作整體,放到正弦函數(shù)的增區(qū)間上,解不等式得函數(shù)的單調(diào)遞增區(qū)間.
解答 解:(Ⅰ)函數(shù)f(x)=2sin2x+cos(2x-$\frac{π}{3}$).
化簡(jiǎn)可得:f(x)=1-cos2x+$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x=1+sin(2x-$\frac{π}{6}$)
∴函數(shù)的最小正周期T=$\frac{2π}{2}=π$
(Ⅱ)由$-\frac{π}{2}+2kπ≤2x-\frac{π}{6}≤\frac{π}{2}+2kπ$,k∈Z,
得$kπ-\frac{π}{6}$≤x≤$\frac{π}{3}+kπ$.
∴f(x)在(0,$\frac{π}{2}$)上的單調(diào)遞增區(qū)間為(0,$\frac{π}{3}$].
點(diǎn)評(píng) 本題主要考查對(duì)三角函數(shù)的化簡(jiǎn)能力和三角函數(shù)的圖象和性質(zhì)的運(yùn)用,利用三角函數(shù)公式將函數(shù)進(jìn)行化簡(jiǎn)是解決本題的關(guān)鍵.屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | m∥n | B. | m⊥n | C. | m∥l | D. | n⊥l |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)是增函數(shù) | B. | f(x)是減函數(shù) | C. | f(x)有最大值1 | D. | f(x)有最小值1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-2,1] | B. | [-1,2) | C. | [-1,+∞) | D. | (-2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $({\frac{π}{4},\frac{π}{3}})$ | B. | $({-\frac{π}{4},\frac{π}{4}})$ | C. | $({0,\frac{π}{3}})$ | D. | $({-\frac{π}{3},0})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2或3 | B. | 4或3 | C. | 5或3 | D. | 8或3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | l∥α | B. | l與α異面 | C. | l與α相交 | D. | l與α沒(méi)有公共點(diǎn) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com