精英家教網 > 高中數學 > 題目詳情

【題目】設橢圓M 的離心率與雙曲線的離心率互為倒數,且內切于圓。

(1)求橢圓M的方程;

(2)已知,是橢圓M的下焦點,在橢圓M上是否存在點P,使的周長最大?若存在,請求出周長的最大值,并求此時的面積;若不存在,請說明理由。

【答案】(1); (2).

【解析】

(1)雙曲線的離心率為,∴橢圓的離心率為

∵橢圓M內切于圓得解。

(2)橢圓的焦點為,由橢圓的定義得:

的周長為

當且僅當點P在線段的延長線上時取等號。

∴在橢圓M上存在點P,使的周長取得最大值,

直線的方程為,由 ∵點P在線段的延長線上,∴點P的坐標為,再求解的面積。

(1)∵雙曲線的離心率為,∴橢圓M的離心率為

∵橢圓M內切于圓

得: 所求橢圓M的方程為

(2)橢圓M的上焦點為,由橢圓的定義得:

的周長為

當且僅當點P在線段的延長線上時取等號。

∴在橢圓M上存在點P,使的周長取得最大值,

直線的方程為,由

∵點P在線段的延長線上,∴點P的坐標為

的面積。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】對于函數fx),若存在區(qū)間M[a,b]ab)使得{y|yfx),xM}M,則稱區(qū)間M為函數fx)的一個穩(wěn)定區(qū)間,給出下列四個函數:

fx,②fx)=x3,③fx)=cosx,④fx)=tanx

其中存在穩(wěn)定區(qū)間的函數有(

A.①②③B.②③C.③④D.①④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,一個正方形花圃被分成5.

1)若給這5個部分種植花,要求相鄰兩部分種植不同顏色的花,己知現(xiàn)有紅、黃、藍、綠4種顏色不同的花,求有多少種不同的種植方法?

2)若向這5個部分放入7個不同的盆栽,要求每個部分都有盆栽,問有多少種不同的放法?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校有微機臺,分別放在個房間,各房間開門鑰匙互不相同.某期培訓班有學員人(),每晚恰有人進機房實習操作,為保證每人一臺機,至少應準備多少把鑰匙分給這個學員,使得每晚不論哪個人進機房,都能用自己分到的鑰匙打開一間機房的門進去練習,并按分得鑰匙少的人先開門的原則,能保證每人恰可得到一個房間.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】考慮某長方體的三個兩兩相鄰的面上的三條對角線及體對角線(共四條線段),則正確的命題是( )

A. 必有某三條線段不能組成一個三角形的三邊

B. 任何三條線段都可組成三角形,其每個內角都是銳角

C. 任何三條線段都可組成三角形,其中必有一個是鈍角三角形

D. 任何三條線段都可組成三角形,其形狀是“銳角的”或是“非銳角的”,隨長方體的長、寬、高而變化,不能確定

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為直角梯形,BC∥AD,AB⊥BC,∠ADC=45°,PA⊥平面ABCD,AB=AP=1,AD=3.

(1)求異面直線PB與CD所成角的大;

(2)求點D到平面PBC的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知圓的方程為,過點的直線與圓交于兩點,

1)若,求直線的方程;

2)若直線軸交于點,設,,,,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓與圓.

(1)求證兩圓相交;

(2)求兩圓公共弦所在直線的方程;

(3)求過兩圓的交點且圓心在直線上的圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(本小題14分),

1)當時,求曲線處的切線方程;

2)如果存在,使得成立,

求滿足上述條件的最大整數

3)如果對任意的,都有成立,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案