【題目】對于函數(shù)fx),若存在區(qū)間M[a,b]ab)使得{y|yfx),xM}M,則稱區(qū)間M為函數(shù)fx)的一個穩(wěn)定區(qū)間,給出下列四個函數(shù):

fx,②fx)=x3,③fx)=cosx,④fx)=tanx

其中存在穩(wěn)定區(qū)間的函數(shù)有(

A.①②③B.②③C.③④D.①④

【答案】A

【解析】

根據(jù)函數(shù)的單調(diào)性依次計算每個函數(shù)對應(yīng)的值域判斷得到答案.

fx,取時,如圖所示:函數(shù)在上單調(diào)遞增,且,故滿足;

fx)=x3,函數(shù)單調(diào)遞增,取,故滿足;

fx)=cosx,函數(shù)在上單調(diào)遞減,,故滿足;

fx)=tanx,函數(shù)在每個周期內(nèi)單調(diào)遞增,在每個周期內(nèi)沒有兩個交點,如圖所示,故不滿足;

故選:.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術(shù)》中盈不足章中有這樣一則故事:今有良馬與駑馬發(fā)長安,至齊. 齊去長安三千里. 良馬初日行一百九十三里,日增一十二里;駑馬初日行九十七里,日減二里.為了計算每天良馬和駑馬所走的路程之和,設(shè)計框圖如下圖. 若輸出的 的值為 350,則判斷框中可填( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,圓軸交于、兩點,動直線)與軸、軸分別交于點,與圓交于、兩點(點縱坐標大于點縱坐標).

1)若,點與點重合,求點的坐標;

2)若,,求直線將圓分成的劣弧與優(yōu)弧之比;

3)若,設(shè)直線、的斜率分別為、,是否存在實數(shù)使得?若存在,求出的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)當時,求在區(qū)間上的最大值和最小值;

2)若對恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓.

1)若圓的切線在軸、軸上的截距相等,求切線方程;

2)從圓外一點向該圓引一條切線,切點為,且有為坐標原點),求使取得最小值時點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,近日我漁船編隊在島周圍海域作業(yè),在島的南偏西20°方向有一個海面觀測站,某時刻觀測站發(fā)現(xiàn)有不明船只向我漁船編隊靠近,現(xiàn)測得與相距31海里的處有一艘海警船巡航,上級指示海警船沿北偏西40°方向,以40海里/小時的速度向島直線航行以保護我漁船編隊,30分鐘后到達處,此時觀測站測得間的距離為21海里.

(Ⅰ)求的值;

(Ⅱ)試問海警船再向前航行多少分鐘方可到島?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=cosxacosxsinxaR),且f .

1)求a的值;

2)求fx)的單調(diào)遞增區(qū)間;

3)求fx)在區(qū)間[0]上的最小值及對應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,設(shè)是平面內(nèi)相交成角的兩條數(shù)軸 ,分別是軸,軸正方向同向的單位向量,若向量,則把有序數(shù)對叫做向量在坐標系中的坐標,假設(shè).

(1)計算的大小;

(2)設(shè)向量,若共線,求實數(shù)的值;

(3)是否存在實數(shù),使得與向量垂直,若存在求出的值,若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)橢圓M 的離心率與雙曲線的離心率互為倒數(shù),且內(nèi)切于圓。

(1)求橢圓M的方程;

(2)已知是橢圓M的下焦點,在橢圓M上是否存在點P,使的周長最大?若存在,請求出周長的最大值,并求此時的面積;若不存在,請說明理由。

查看答案和解析>>

同步練習冊答案