【題目】化簡或求值:
(1)(2 0+22×(2 ﹣(
(2)2(lg 2+lg lg5+

【答案】
(1)解:(2 0+22×(2 ﹣(

=1+ ×[( 2]

=1+ =


(2)解:2(lg 2+lg lg5+

=2 + lg2(1﹣lg2)+

= (lg2)2+ lg2﹣ (lg2)2+1﹣ lg2

=1.


【解析】(1)(2 0=1,22×(2 = ×[( 2] ,( = ;(2)lg = lg2,lg5=1﹣lg2,從而化簡求值.
【考點精析】解答此題的關(guān)鍵在于理解對數(shù)的運算性質(zhì)的相關(guān)知識,掌握①加法:②減法:③數(shù)乘:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】(1).選修4—1:幾何證明選講

如圖,CD是圓O的切線,切點為D,CA是過圓心O的割線且交圓O于點B,DADC.求證: CA3CB

(2).選修4—2矩陣與變換

設(shè)二階矩陣A

(Ⅰ)求A1;

(Ⅱ)若曲線C在矩陣A對應(yīng)的變換作用下得到曲線C6x2y21,求曲線C的方程.

(3).選修4—4坐標系與參數(shù)方程

在平面直角坐標系xOy中,直線l的參數(shù)方程為t為參數(shù)),圓C的參數(shù)方程為θ為參數(shù)).若直線l與圓C相切,求實數(shù)a的值.

(4).選修4—5:不等式選講

解不等式:|x2||x1|≥5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)f(x)是偶函數(shù),且在(0,+∞)內(nèi)是減函數(shù),又f(﹣3)=0,則xf(x)>0的解集是(
A.{x|﹣3<x<0或x>3}
B.{x|x<﹣3或x>3}
C.{x|﹣3<x<0或x<x<3}
D.{x|x<﹣3或0<x<3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知奇函數(shù)f(x),x∈(0,+∞),f(x)=lgx,則不等式f(x)<0的解集是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠生產(chǎn)甲,乙兩種芯片,其質(zhì)量按測試指標劃分為:指標大于或等于82為合格品,小于82為次品.現(xiàn)隨機抽取這兩種芯片各100件進行檢測,檢測結(jié)果統(tǒng)計如下:

測試指標

[70,76)

[76,82)

[82,88)

[88,94)

[94,100]

芯片甲

8

12

40

32

8

芯片乙

7

18

40

29

6


(1)試分別估計芯片甲,芯片乙為合格品的概率;
(2)生產(chǎn)一件芯片甲,若是合格品可盈利40元,若是次品則虧損5元;生產(chǎn)一件芯片乙,若是合格品可盈利50元,若是次品則虧損10元.在(1)的前提下,記X為生產(chǎn)1件芯片甲和1件芯片乙所得的總利潤,求隨機變量X的分布列及生產(chǎn)1件芯片甲和1件芯片乙所得總利潤的平均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知奇函數(shù)f(x)在x≥0時的圖象是如圖所示的拋物線的一部分,
(1)請補全函數(shù)f(x)的圖象

(2)求函數(shù)f(x)的表達式,
(3)寫出函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線C的參數(shù)方程為 (α為參數(shù)),在以原點為極點,x軸正半軸為極軸的極坐標系中,直線l的極坐標方程為
(1)求C的普通方程和l的傾斜角;
(2)設(shè)點P(0,2),l和C交于A,B兩點,求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙、丙、丁四位同學得到方程2x+e0.3x﹣100=0(其中e=2.7182…)的大于零的近似解依次為①50;②50.1;③49.5;④50.001,你認為的答案為最佳近似解(請?zhí)罴、乙、丙、丁中的一個)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)f(x),g(x)分別是R上的奇函數(shù)、偶函數(shù),且滿足f(x)﹣g(x)=ex , 則有(
A.f(2)<f(3)<g(0)
B.g(0)<f(3)<f(2)
C.f(2)<g(0)<f(3)
D.g(0)<f(2)<f(3)

查看答案和解析>>

同步練習冊答案